BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 20153500)

  • 1. An investigation into the N- and C-capping effects of glycine in cavitand-based four-helix bundle proteins.
    Huttunen-Hennelly HE
    Bioorg Chem; 2010 Jun; 38(3):98-107. PubMed ID: 20153500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of peptide design in four-, five-, and six-helix bundle template assembled synthetic protein molecules.
    Seo ES; Sherman JC
    Biopolymers; 2007; 88(5):774-9. PubMed ID: 17554752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Four-helix bundle cavitein reveals middle leucine as linchpin.
    Freeman JO; Wallhorn D; Sherman JC
    Biopolymers; 2007; 88(5):725-32. PubMed ID: 17351918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation into the native-like properties of de novo designed cavitand-based four-helix bundle proteins.
    Huttunen-Hennelly HE; Sherman JC
    Biopolymers; 2008; 90(1):37-50. PubMed ID: 17994581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal attachment position and linker length promote native-like character of cavitand-based template-assembled synthetic proteins (TASPs).
    Seo ES; Scott WR; Straus SK; Sherman JC
    Chemistry; 2007; 13(13):3596-605. PubMed ID: 17295367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of increased length and intact capping sequences to the conformational preference for helix in a 31-residue peptide from the C terminus of myohemerythrin.
    Reymond MT; Huo S; Duggan B; Wright PE; Dyson HJ
    Biochemistry; 1997 Apr; 36(17):5234-44. PubMed ID: 9136885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of three- and four-helix bundle TASP molecules.
    Causton AS; Sherman JC
    J Pept Sci; 2002 Jun; 8(6):275-82. PubMed ID: 12093004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformationally constrained sequence designs to bias monomer-dimer equilibriums in TASP systems.
    Freeman JO; Sherman JC
    Chemistry; 2011 Dec; 17(50):14120-8. PubMed ID: 22095703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global topology & stability and local structure & dynamics in a synthetic spin-labeled four-helix bundle protein.
    Gibney BR; Johansson JS; Rabanal F; Skalicky JJ; Wand AJ; Dutton PL
    Biochemistry; 1997 Mar; 36(10):2798-806. PubMed ID: 9062107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of de novo four-helix bundles by molecular dynamics simulations.
    Scott WR; Seo E; Huttunen H; Wallhorn D; Sherman JC; Straus SK
    Proteins; 2006 Aug; 64(3):719-29. PubMed ID: 16783791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The design, synthesis, and characterization of the first cavitand-based de novo hetero-template-assembled synthetic proteins (Hetero-TASPs).
    Huttunen-Hennelly HE; Sherman JC
    Org Biomol Chem; 2007 Nov; 5(22):3637-50. PubMed ID: 17971993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. C-capping and helix stability: the Pro C-capping motif.
    Prieto J; Serrano L
    J Mol Biol; 1997 Nov; 274(2):276-88. PubMed ID: 9398533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic role of helix caps in protein folding is context-dependent.
    Kapp GT; Richardson JS; Oas TG
    Biochemistry; 2004 Apr; 43(13):3814-23. PubMed ID: 15049688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational analysis of a set of peptides corresponding to the entire primary sequence of the N-terminal domain of the ribosomal protein L9: evidence for stable native-like secondary structure in the unfolded state.
    Luisi DL; Wu WJ; Raleigh DP
    J Mol Biol; 1999 Mar; 287(2):395-407. PubMed ID: 10080901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of four helix bundle topology on heme binding and redox properties.
    Gibney BR; Rabanal F; Reddy KS; Dutton PL
    Biochemistry; 1998 Mar; 37(13):4635-43. PubMed ID: 9521784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A calorimetric study of the folding-unfolding of an alpha-helix with covalently closed N and C-terminal loops.
    Taylor JW; Greenfield NJ; Wu B; Privalov PL
    J Mol Biol; 1999 Aug; 291(4):965-76. PubMed ID: 10452900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competing interactions contributing to alpha-helical stability in aqueous solution.
    Bodkin MJ; Goodfellow JM
    Protein Sci; 1995 Apr; 4(4):603-12. PubMed ID: 7613460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helix packing motif common to the crystal structures of two undecapeptides containing dehydrophenylalanine residues: implications for the de novo design of helical bundle super secondary structural modules.
    Rudresh ; Gupta M; Ramakumar S; Chauhan VS
    Biopolymers; 2005; 80(5):617-27. PubMed ID: 16193455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alpha helix capping in synthetic model peptides by reciprocal side chain-main chain interactions: evidence for an N terminal "capping box".
    Zhou HX; Lyu P; Wemmer DE; Kallenbach NR
    Proteins; 1994 Jan; 18(1):1-7. PubMed ID: 8146119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The roles of side chain and backbone in protein structure probed with glycine- and sarcosine-rich synthetic leucine zipper peptides.
    Butcher DJ; Luo Z; Huang Z
    Biochem Biophys Res Commun; 1999 Nov; 265(2):350-5. PubMed ID: 10558870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.