These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 20153719)

  • 41. Metabolic homeostasis in the human erythrocyte: in silico analysis.
    de Atauri P; Ramírez MJ; Kuchel PW; Carreras J; Cascante M
    Biosystems; 2006; 83(2-3):118-24. PubMed ID: 16236423
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of small noncoding RNAs in ex vivo stored human mature red blood cells: changes in noncoding RNA levels correlate with storage lesion events.
    Sarachana T; Kulkarni S; Atreya CD
    Transfusion; 2015 Nov; 55(11):2672-83. PubMed ID: 26174076
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Release of vesicles enriched in complement receptor 1 from human erythrocytes.
    Pascual M; Lutz HU; Steiger G; Stammler P; Schifferli JA
    J Immunol; 1993 Jul; 151(1):397-404. PubMed ID: 8326133
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Content of intracellular ATP and structural state of proteins in the erythrocyte membrane].
    Slobozhanina EI; Chernitskiĭ EA; Koslova NM
    Biofizika; 1982; 27(3):425-9. PubMed ID: 7093324
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Automation of the glycerolization of red blood cells with the high-separation bowl in the Haemonetics ACP 215 instrument.
    Valeri CR; Ragno G; Van Houten P; Rose L; Rose M; Egozy Y; Popovsky MA
    Transfusion; 2005 Oct; 45(10):1621-7. PubMed ID: 16181213
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Optimization of trehalose loading in red blood cells before freeze-drying].
    Zhuang Y; Liu JH; Ouyang XL; Chen LF; Che J
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2007 Apr; 15(2):412-6. PubMed ID: 17493359
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vesicle release from erythrocytes during storage and failure of rejuvenation to restore cell morphology.
    Laczkó J; Szabolcs M; Jóna I
    Haematologia (Budap); 1985; 18(4):233-48. PubMed ID: 3836159
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Altered processing of thawed red cells to improve the in vitro quality during postthaw storage at 4 degrees C.
    Lagerberg JW; Truijens-de Lange R; de Korte D; Verhoeven AJ
    Transfusion; 2007 Dec; 47(12):2242-9. PubMed ID: 17714415
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Storage effects on the Cole-Cole parameters of erythrocyte suspensions.
    Sezdi M; Bayik M; Ulgen Y
    Physiol Meas; 2006 Jul; 27(7):623-35. PubMed ID: 16705260
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spicule movement on RBCs during echinocyte formation and possible segregation in the RBC membrane.
    Melzak KA; Moreno-Flores S; Bieback K
    Biochim Biophys Acta Biomembr; 2020 Oct; 1862(10):183338. PubMed ID: 32485161
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Accelerating metabolism and transmembrane cation flux by distorting red blood cells.
    Kuchel PW; Shishmarev D
    Sci Adv; 2017 Oct; 3(10):eaao1016. PubMed ID: 29057326
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Light scattering of human red blood cells during metabolic remodeling of the membrane.
    Park Y; Best-Popescu CA; Dasari RR; Popescu G
    J Biomed Opt; 2011; 16(1):011013. PubMed ID: 21280900
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Membrane flickering of the human erythrocyte: physical and chemical effectors.
    Puckeridge M; Chapman BE; Conigrave AD; Kuchel PW
    Eur Biophys J; 2014 May; 43(4-5):169-77. PubMed ID: 24668224
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Membrane flickering of the human erythrocyte: constrained random walk used with Bayesian analysis.
    Puckeridge M; Kuchel PW
    Eur Biophys J; 2014 May; 43(4-5):157-67. PubMed ID: 24682391
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Normal red blood cells' shape stabilized by membrane's in-plane ordering.
    Mesarec L; Góźdź W; Iglič A; Kralj-Iglič V; Virga EG; Kralj S
    Sci Rep; 2019 Dec; 9(1):19742. PubMed ID: 31875042
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Correlating nanoscale motion and ATP production in healthy and favism erythrocytes: a real-time nanomotion sensor study.
    Girasole M; Dinarelli S; Longo G
    Front Microbiol; 2023; 14():1196764. PubMed ID: 37333637
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surprising Structural and Functional Properties of Favism Erythrocytes Are Linked to Special Metabolic Regulation: A Cell Aging Study.
    Dinarelli S; Longo G; Germanova-Taneva S; Todinova S; Krumova S; Girasole M
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36614084
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechano-Transduction Boosts the Aging Effects in Human Erythrocytes Submitted to Mechanical Stimulation.
    Dinarelli S; Longo G; Francioso A; Mosca L; Girasole M
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077573
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stability of Erythrocyte-Derived Nanovesicles Assessed by Light Scattering and Electron Microscopy.
    Božič D; Hočevar M; Kisovec M; Pajnič M; Pađen L; Jeran M; Bedina Zavec A; Podobnik M; Kogej K; Iglič A; Kralj-Iglič V
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884574
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An Insight into the Stages of Ion Leakage during Red Blood Cell Storage.
    Zimna A; Kaczmarska M; Szczesny-Malysiak E; Wajda A; Bulat K; Alcicek FC; Zygmunt M; Sacha T; Marzec KM
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33809183
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.