These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 20153927)

  • 1. Scanning electron microscopic study of hazardous waste flakes of polyethylene terephthalate (PET) by aminolysis and ammonolysis.
    Mittal A; Soni RK; Dutt K; Singh S
    J Hazard Mater; 2010 Jun; 178(1-3):390-6. PubMed ID: 20153927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alkyd-amino resins based on waste PET for coating applications.
    Torlakoğlu A; Güçlü G
    Waste Manag; 2009 Jan; 29(1):350-4. PubMed ID: 18424023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recycling of waste PET into useful textile auxiliaries.
    Shukla SR; Harad AM; Jawale LS
    Waste Manag; 2008; 28(1):51-6. PubMed ID: 17207616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors affecting degradation of polyethylene terephthalate (PET) during pre-flotation conditioning.
    Caparanga AR; Basilia BA; Dagbay KB; Salvacion JW
    Waste Manag; 2009 Sep; 29(9):2425-8. PubMed ID: 19394808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supercritical methanol for polyethylene terephthalate depolymerization: observation using simulator.
    Genta M; Iwaya T; Sasaki M; Goto M
    Waste Manag; 2007; 27(9):1167-77. PubMed ID: 16914302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gel permeation chromatography (GPC) of repeatedly extruded polyethylene terephthalate (PET).
    Milana MR; Denaro M; Arrivabene L; Maggio A; Gramiccioni L
    Food Addit Contam; 1998 Apr; 15(3):355-61. PubMed ID: 9666895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SiOx layer as functional barrier in polyethylene terephthalate (PET) bottles against potential contaminants from post-consumer recycled PET.
    Welle F; Franz R
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Jun; 25(6):788-94. PubMed ID: 18484307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of functionalized polyethylene terephthalate with immobilized NTPDase and cysteine.
    Muthuvijayan V; Gu J; Lewis RS
    Acta Biomater; 2009 Nov; 5(9):3382-93. PubMed ID: 19477307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material.
    Gürü M; Çubuk MK; Arslan D; Farzanian SA; Bilici İ
    J Hazard Mater; 2014 Aug; 279():302-10. PubMed ID: 25080154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaching zinc from spent catalyst: process optimization using response surface methodology.
    Zhang Z; Peng J; Srinivasakannan C; Zhang Z; Zhang L; Fernández Y; Menéndez JA
    J Hazard Mater; 2010 Apr; 176(1-3):1113-7. PubMed ID: 20060224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of content and particle size of waste pet bottles on concrete behavior at different w/c ratios.
    Albano C; Camacho N; Hernández M; Matheus A; Gutiérrez A
    Waste Manag; 2009 Oct; 29(10):2707-16. PubMed ID: 19525104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical and mechanical properties of mortars containing PET and PC waste aggregates.
    Hannawi K; Kamali-Bernard S; Prince W
    Waste Manag; 2010 Nov; 30(11):2312-20. PubMed ID: 20417085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of fluidization to separate packaging waste plastics.
    Carvalho MT; Ferreira C; Portela A; Santos JT
    Waste Manag; 2009 Mar; 29(3):1138-43. PubMed ID: 18845431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete.
    Akçaözoğlu S; Atiş CD; Akçaözoğlu K
    Waste Manag; 2010 Feb; 30(2):285-90. PubMed ID: 19853433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano/micro electro-spun polyethylene terephthalate fibrous mat preparation and characterization.
    Hadjizadeh A; Ajji A; Bureau MN
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):340-51. PubMed ID: 21316622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and biocompatibility investigation of TiO(2) films on the polymer substrates obtained via a novel and versatile route.
    Ou J; Wang J; Zhang D; Zhang P; Liu S; Yan P; Liu B; Yang S
    Colloids Surf B Biointerfaces; 2010 Mar; 76(1):123-7. PubMed ID: 19914812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Valorization of post-consumer waste plastic in cementitious concrete composites.
    Marzouk OY; Dheilly RM; Queneudec M
    Waste Manag; 2007; 27(2):310-8. PubMed ID: 16730969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decontamination efficiency of a new post-consumer poly(ethylene terephthalate) (PET) recycling concept.
    Welle F
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Jan; 25(1):123-31. PubMed ID: 17906995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upcycling: converting waste plastics into paramagnetic, conducting, solid, pure carbon microspheres.
    Pol VG
    Environ Sci Technol; 2010 Jun; 44(12):4753-9. PubMed ID: 20481621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physico-chemical and biological evaluation of excimer laser irradiated polyethylene terephthalate (pet) surfaces.
    Mayer G; Blanchemain N; Dupas-Bruzek C; Miri V; Traisnel M; Gengembre L; Derozier D; Hildebrand HF
    Biomaterials; 2006 Feb; 27(4):553-66. PubMed ID: 16024074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.