These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 20154012)

  • 1. Reactive mechanism of cognitive control system.
    Morishima Y; Okuda J; Sakai K
    Cereb Cortex; 2010 Nov; 20(11):2675-83. PubMed ID: 20154012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information.
    Egner T; Hirsch J
    Nat Neurosci; 2005 Dec; 8(12):1784-90. PubMed ID: 16286928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decomposing interference during Stroop performance into different conflict factors: an event-related fMRI study.
    Melcher T; Gruber O
    Cortex; 2009 Feb; 45(2):189-200. PubMed ID: 19150520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anterior cingulate and prefrontal cortex activity in an FMRI study of trial-to-trial adjustments on the Simon task.
    Kerns JG
    Neuroimage; 2006 Oct; 33(1):399-405. PubMed ID: 16876434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple cognitive control mechanisms associated with the nature of conflict.
    Kim C; Chung C; Kim J
    Neurosci Lett; 2010 Jun; 476(3):156-60. PubMed ID: 20399838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anterior cingulate and posterior parietal cortices are sensitive to dissociable forms of conflict in a task-switching paradigm.
    Liston C; Matalon S; Hare TA; Davidson MC; Casey BJ
    Neuron; 2006 May; 50(4):643-53. PubMed ID: 16701213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategic modulation of cognitive control.
    Lungu OV; Liu T; Waechter T; Willingham DT; Ashe J
    J Cogn Neurosci; 2007 Aug; 19(8):1302-15. PubMed ID: 17651004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fronto-striatal hypoactivation during correct information retrieval in patients with schizophrenia: an fMRI study.
    Koch K; Wagner G; Nenadic I; Schachtzabel C; Schultz C; Roebel M; Reichenbach JR; Sauer H; Schlösser RG
    Neuroscience; 2008 Apr; 153(1):54-62. PubMed ID: 18359576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolving emotional conflict: a role for the rostral anterior cingulate cortex in modulating activity in the amygdala.
    Etkin A; Egner T; Peraza DM; Kandel ER; Hirsch J
    Neuron; 2006 Sep; 51(6):871-82. PubMed ID: 16982430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mnemonic function of the dorsolateral prefrontal cortex in conflict-induced behavioral adjustment.
    Mansouri FA; Buckley MJ; Tanaka K
    Science; 2007 Nov; 318(5852):987-90. PubMed ID: 17962523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the left DLPFC in endogenous task preparation: experimental repetitive transcranial magnetic stimulation study.
    Vanderhasselt MA; De Raedt R; Leyman L; Baeken C
    Neuropsychobiology; 2010; 61(3):162-8. PubMed ID: 20173354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Task-dependent response conflict monitoring and cognitive control in anterior cingulate and dorsolateral prefrontal cortices.
    Kim C; Chung C; Kim J
    Brain Res; 2013 Nov; 1537():216-23. PubMed ID: 24012877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anterior cingulate conflict monitoring and adjustments in control.
    Kerns JG; Cohen JD; MacDonald AW; Cho RY; Stenger VA; Carter CS
    Science; 2004 Feb; 303(5660):1023-6. PubMed ID: 14963333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cognitive control explored by linear modelling behaviour and fMRI data during Stroop tasks.
    Liu J; Bai J; Zhang D
    Physiol Meas; 2008 Jul; 29(7):703-10. PubMed ID: 18560059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural correlates of spatial working memory in humans: a functional magnetic resonance imaging study comparing visual and tactile processes.
    Ricciardi E; Bonino D; Gentili C; Sani L; Pietrini P; Vecchi T
    Neuroscience; 2006 Apr; 139(1):339-49. PubMed ID: 16324793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diurnal patterns of activity of the orienting and executive attention neuronal networks in subjects performing a Stroop-like task: a functional magnetic resonance imaging study.
    Marek T; Fafrowicz M; Golonka K; Mojsa-Kaja J; Oginska H; Tucholska K; Urbanik A; Beldzik E; Domagalik A
    Chronobiol Int; 2010 Jul; 27(5):945-58. PubMed ID: 20636208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for anterior cingulate cortex involvement in monitoring preparatory attentional set.
    Luks TL; Simpson GV; Feiwell RJ; Miller WL
    Neuroimage; 2002 Oct; 17(2):792-802. PubMed ID: 12377154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the neural basis of focused and divided attention.
    Nebel K; Wiese H; Stude P; de Greiff A; Diener HC; Keidel M
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):760-76. PubMed ID: 16337110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lateralized contribution of prefrontal cortex in controlling task-irrelevant information during verbal and spatial working memory tasks: rTMS evidence.
    Sandrini M; Rossini PM; Miniussi C
    Neuropsychologia; 2008; 46(7):2056-63. PubMed ID: 18336847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural networks of response shifting: influence of task speed and stimulus material.
    Loose R; Kaufmann C; Tucha O; Auer DP; Lange KW
    Brain Res; 2006 May; 1090(1):146-55. PubMed ID: 16643867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.