These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 20154096)

  • 1. Metabolome and photochemical analysis of rice plants overexpressing Arabidopsis NAD kinase gene.
    Takahara K; Kasajima I; Takahashi H; Hashida SN; Itami T; Onodera H; Toki S; Yanagisawa S; Kawai-Yamada M; Uchimiya H
    Plant Physiol; 2010 Apr; 152(4):1863-73. PubMed ID: 20154096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pleiotropic modulation of carbon and nitrogen metabolism in Arabidopsis plants overexpressing the NAD kinase2 gene.
    Takahashi H; Takahara K; Hashida SN; Hirabayashi T; Fujimori T; Kawai-Yamada M; Yamaya T; Yanagisawa S; Uchimiya H
    Plant Physiol; 2009 Sep; 151(1):100-13. PubMed ID: 19587098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADK2, an Arabidopsis chloroplastic NAD kinase, plays a vital role in both chlorophyll synthesis and chloroplast protection.
    Chai MF; Chen QJ; An R; Chen YM; Chen J; Wang XC
    Plant Mol Biol; 2005 Nov; 59(4):553-64. PubMed ID: 16244906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered metabolism of chloroplastic NAD kinase-overexpressing Arabidopsis in response to magnesium sulfate supplementation.
    Kawai-Yamada M; Miyagi A; Sato Y; Hosoi Y; Hashida SN; Ishikawa T; Yamaguchi M
    Plant Signal Behav; 2021 Jan; 16(1):1844509. PubMed ID: 33210985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of NAD kinase 2 overexpression on primary metabolite profiles in rice leaves under elevated carbon dioxide.
    Onda Y; Miyagi A; Takahara K; Uchimiya H; Kawai-Yamada M
    Plant Biol (Stuttg); 2014 Jul; 16(4):819-24. PubMed ID: 24397549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The NAD kinase OsNADK1 affects the intracellular redox balance and enhances the tolerance of rice to drought.
    Wang X; Li BB; Ma TT; Sun LY; Tai L; Hu CH; Liu WT; Li WQ; Chen KM
    BMC Plant Biol; 2020 Jan; 20(1):11. PubMed ID: 31910821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constitutive expression of a plant ferredoxin-like protein (pflp) enhances capacity of photosynthetic carbon assimilation in rice (Oryza sativa).
    Chang H; Huang HE; Cheng CF; Ho MH; Ger MJ
    Transgenic Res; 2017 Apr; 26(2):279-289. PubMed ID: 28054169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The knockdown of chloroplastic ascorbate peroxidases reveals its regulatory role in the photosynthesis and protection under photo-oxidative stress in rice.
    Caverzan A; Bonifacio A; Carvalho FE; Andrade CM; Passaia G; Schünemann M; Maraschin Fdos S; Martins MO; Teixeira FK; Rauber R; Margis R; Silveira JA; Margis-Pinheiro M
    Plant Sci; 2014 Jan; 214():74-87. PubMed ID: 24268165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced dihydroflavonol-4-reductase activity and NAD homeostasis leading to cell death tolerance in transgenic rice.
    Hayashi M; Takahashi H; Tamura K; Huang J; Yu LH; Kawai-Yamada M; Tezuka T; Uchimiya H
    Proc Natl Acad Sci U S A; 2005 May; 102(19):7020-5. PubMed ID: 15863611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The NAD Kinase Slr0400 Functions as a Growth Repressor in Synechocystis sp. PCC 6803.
    Ishikawa Y; Cassan C; Kadeer A; Yuasa K; Sato N; Sonoike K; Kaneko Y; Miyagi A; Takahashi H; Ishikawa T; Yamaguchi M; Nishiyama Y; Hihara Y; Gibon Y; Kawai-Yamada M
    Plant Cell Physiol; 2021 Sep; 62(4):668-677. PubMed ID: 33560438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide analysis of the NADK gene family in plants.
    Li WY; Wang X; Li R; Li WQ; Chen KM
    PLoS One; 2014; 9(6):e101051. PubMed ID: 24968225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and characterization of two NAD kinases from Arabidopsis. identification of a calmodulin binding isoform.
    Turner WL; Waller JC; Vanderbeld B; Snedden WA
    Plant Physiol; 2004 Jul; 135(3):1243-55. PubMed ID: 15247403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic changes associated with dark-induced leaf senescence in Arabidopsis
    Chaomurilege ; Miyagi A; Ishikawa T; Yamaguchi M; Murayama H; Kawai-Yamada M
    Plant Signal Behav; 2023 Dec; 18(1):2215618. PubMed ID: 37272565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolome analysis of response to oxidative stress in rice suspension cells overexpressing cell death suppressor Bax inhibitor-1.
    Ishikawa T; Takahara K; Hirabayashi T; Matsumura H; Fujisawa S; Terauchi R; Uchimiya H; Kawai-Yamada M
    Plant Cell Physiol; 2010 Jan; 51(1):9-20. PubMed ID: 19919949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcellular and tissue localization of NAD kinases from Arabidopsis: compartmentalization of de novo NADP biosynthesis.
    Waller JC; Dhanoa PK; Schumann U; Mullen RT; Snedden WA
    Planta; 2010 Jan; 231(2):305-17. PubMed ID: 19921251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of plastidic maize NADP-malate dehydrogenase (ZmNADP-MDH) in Arabidopsis thaliana confers tolerance to salt stress.
    Kandoi D; Mohanty S; Tripathy BC
    Protoplasma; 2018 Mar; 255(2):547-563. PubMed ID: 28942523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of two isoforms of leaf-type ferredoxin-NADP(+)-oxidoreductase in rice using the heterologous expression system of Arabidopsis.
    Higuchi-Takeuchi M; Ichikawa T; Kondou Y; Matsui K; Hasegawa Y; Kawashima M; Sonoike K; Mori M; Hirochika H; Matsui M
    Plant Physiol; 2011 Sep; 157(1):96-108. PubMed ID: 21734114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of an NADP-malic enzyme gene in rice (Oryza sativa. L) is induced by environmental stresses; over-expression of the gene in Arabidopsis confers salt and osmotic stress tolerance.
    Liu S; Cheng Y; Zhang X; Guan Q; Nishiuchi S; Hase K; Takano T
    Plant Mol Biol; 2007 May; 64(1-2):49-58. PubMed ID: 17245561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Change in expression levels of NAD kinase-encoding genes in Flaveria species.
    Tanaka M; Ishikawa Y; Suzuki S; Ogawa T; Taniguchi YY; Miyagi A; Ishikawa T; Yamaguchi M; Munekage YN; Kawai-Yamada M
    J Plant Physiol; 2021 Oct; 265():153495. PubMed ID: 34411985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolomic analysis of NAD kinase-deficient mutants of the cyanobacterium Synechocystis sp. PCC 6803.
    Ishikawa Y; Miyagi A; Haishima Y; Ishikawa T; Nagano M; Yamaguchi M; Hihara Y; Kawai-Yamada M
    J Plant Physiol; 2016 Oct; 205():105-112. PubMed ID: 27657983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.