BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 20154104)

  • 1. Effects of simulated Mars conditions on the survival and growth of Escherichia coli and Serratia liquefaciens.
    Berry BJ; Jenkins DG; Schuerger AC
    Appl Environ Microbiol; 2010 Apr; 76(8):2377-86. PubMed ID: 20154104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Hypopiezotolerant Bacterium,
    Schuerger AC; Mickol RL; Schwendner P
    Life (Basel); 2020 May; 10(6):. PubMed ID: 32466370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic fingerprints of Serratia liquefaciens under simulated Martian conditions using Biolog GN2 microarrays.
    Schwendner P; Schuerger AC
    Sci Rep; 2018 Oct; 8(1):15721. PubMed ID: 30356072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnesium Sulfate Salt Solutions and Ices Fail to Protect Serratia liquefaciens from the Biocidal Effects of UV Irradiation under Martian Conditions.
    Mickol RL; Page JL; Schuerger AC
    Astrobiology; 2017 May; 17(5):401-412. PubMed ID: 28459604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth of Serratia liquefaciens under 7 mbar, 0°C, and CO2-enriched anoxic atmospheres.
    Schuerger AC; Ulrich R; Berry BJ; Nicholson WL
    Astrobiology; 2013 Feb; 13(2):115-31. PubMed ID: 23289858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Addition of anaerobic electron acceptors to solid media did not enhance growth of 125 spacecraft bacteria under simulated low-pressure Martian conditions.
    Schwendner P; Jobson ME; Schuerger AC
    Sci Rep; 2020 Oct; 10(1):18290. PubMed ID: 33106561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic responses of Serratia liquefaciens cells grown under simulated Martian conditions of low temperature, low pressure, and CO
    Fajardo-Cavazos P; Morrison MD; Miller KM; Schuerger AC; Nicholson WL
    Sci Rep; 2018 Oct; 8(1):14938. PubMed ID: 30297913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Survivability of Psychrobacter cryohalolentis K5 under simulated martian surface conditions.
    Smith DJ; Schuerger AC; Davidson MM; Pacala SW; Bakermans C; Onstott TC
    Astrobiology; 2009 Mar; 9(2):221-8. PubMed ID: 19371162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: implications for the forward contamination of Mars.
    Schuerger AC; Mancinelli RL; Kern RG; Rothschild LJ; McKay CP
    Icarus; 2003 Oct; 165(2):253-76. PubMed ID: 14649627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial survival rates of Escherichia coli and Deinococcus radiodurans under low temperature, low pressure, and UV-Irradiation conditions, and their relevance to possible Martian life.
    Diaz B; Schulze-Makuch D
    Astrobiology; 2006 Apr; 6(2):332-47. PubMed ID: 16689650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survival of Bacillus subtilis endospores on ultraviolet-irradiated rover wheels and Mars regolith under simulated Martian conditions.
    Kerney KR; Schuerger AC
    Astrobiology; 2011 Jun; 11(5):477-85. PubMed ID: 21707388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Twenty Species of Hypobarophilic Bacteria Recovered from Diverse Soils Exhibit Growth under Simulated Martian Conditions at 0.7 kPa.
    Schuerger AC; Nicholson WL
    Astrobiology; 2016 Dec; 16(12):964-976. PubMed ID: 27870556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persistence of biomarker ATP and ATP-generating capability in bacterial cells and spores contaminating spacecraft materials under earth conditions and in a simulated martian environment.
    Fajardo-Cavazos P; Schuerger AC; Nicholson WL
    Appl Environ Microbiol; 2008 Aug; 74(16):5159-67. PubMed ID: 18567687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial growth at the high concentrations of magnesium sulfate found in martian soils.
    Crisler JD; Newville TM; Chen F; Clark BC; Schneegurt MA
    Astrobiology; 2012 Feb; 12(2):98-106. PubMed ID: 22248384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of NanoSIMS to Identify the Lower Limits of Metabolic Activity and Growth by
    Schwendner P; Nguyen AN; Schuerger AC
    Life (Basel); 2021 May; 11(5):. PubMed ID: 34065549
    [No Abstract]   [Full Text] [Related]  

  • 16. Stratosphere Conditions Inactivate Bacterial Endospores from a Mars Spacecraft Assembly Facility.
    Khodadad CL; Wong GM; James LM; Thakrar PJ; Lane MA; Catechis JA; Smith DJ
    Astrobiology; 2017 Apr; 17(4):337-350. PubMed ID: 28323456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface characteristics of spacecraft components affect the aggregation of microorganisms and may lead to different survival rates of bacteria on Mars landers.
    Schuerger AC; Richards JT; Hintze PE; Kern RG
    Astrobiology; 2005 Aug; 5(4):545-59. PubMed ID: 16078871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Photochemistry of Unprotected DNA and DNA inside Bacillus subtilis Spores Exposed to Simulated Martian Surface Conditions of Atmospheric Composition, Temperature, Pressure, and Solar Radiation.
    Nicholson WL; Schuerger AC; Douki T
    Astrobiology; 2018 Apr; 18(4):393-402. PubMed ID: 29589975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of shadowing on survival of bacteria under conditions simulating the Martian atmosphere and UV radiation.
    Osman S; Peeters Z; La Duc MT; Mancinelli R; Ehrenfreund P; Venkateswaran K
    Appl Environ Microbiol; 2008 Feb; 74(4):959-70. PubMed ID: 18083857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of Serratia liquefaciens on dry-cured ham by high pressure processing.
    Belletti N; Garriga M; Aymerich T; Bover-Cid S
    Food Microbiol; 2013 Aug; 35(1):34-7. PubMed ID: 23628612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.