These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 20154133)

  • 21. The Vibrio H-Ring Facilitates the Outer Membrane Penetration of the Polar Sheathed Flagellum.
    Zhu S; Nishikino T; Kojima S; Homma M; Liu J
    J Bacteriol; 2018 Nov; 200(21):. PubMed ID: 30104237
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptional hierarchy of Aeromonas hydrophila polar-flagellum genes.
    Wilhelms M; Molero R; Shaw JG; Tomás JM; Merino S
    J Bacteriol; 2011 Oct; 193(19):5179-90. PubMed ID: 21784933
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors.
    Syed KA; Beyhan S; Correa N; Queen J; Liu J; Peng F; Satchell KJ; Yildiz F; Klose KE
    J Bacteriol; 2009 Nov; 191(21):6555-70. PubMed ID: 19717600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3-Amino 1,8-naphthalimide, a structural analog of the anti-cholera drug virstatin inhibits chemically-biased swimming and swarming motility in vibrios.
    Wang H; Silva AJ; Benitez JA
    Microbes Infect; 2017 Jun; 19(6):370-375. PubMed ID: 28392408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Going against the grain: chemotaxis and infection in Vibrio cholerae.
    Butler SM; Camilli A
    Nat Rev Microbiol; 2005 Aug; 3(8):611-20. PubMed ID: 16012515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quorum Sensing Autoinducer(s) and Flagellum Independently Mediate EPS Signaling in Vibrio cholerae Through LuxO-Independent Mechanism.
    Biswas S; Mukherjee P; Manna T; Dutta K; Guchhait KC; Karmakar A; Karmakar M; Dua P; Panda AK; Ghosh C
    Microb Ecol; 2019 Apr; 77(3):616-630. PubMed ID: 30218129
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The polar flagellar motor of Vibrio cholerae is driven by an Na+ motive force.
    Kojima S; Yamamoto K; Kawagishi I; Homma M
    J Bacteriol; 1999 Mar; 181(6):1927-30. PubMed ID: 10074090
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RpoS controls the Vibrio cholerae mucosal escape response.
    Nielsen AT; Dolganov NA; Otto G; Miller MC; Wu CY; Schoolnik GK
    PLoS Pathog; 2006 Oct; 2(10):e109. PubMed ID: 17054394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alkaline pH Increases Swimming Speed and Facilitates Mucus Penetration for Vibrio cholerae.
    Nhu NTQ; Lee JS; Wang HJ; Dufour YS
    J Bacteriol; 2021 Mar; 203(7):. PubMed ID: 33468594
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Steps in the development of a Vibrio cholerae El Tor biofilm.
    Watnick PI; Kolter R
    Mol Microbiol; 1999 Nov; 34(3):586-95. PubMed ID: 10564499
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural and functional importance of outer membrane proteins in Vibrio cholerae flagellum.
    Bari W; Lee KM; Yoon SS
    J Microbiol; 2012 Aug; 50(4):631-7. PubMed ID: 22923112
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Requirements for conversion of the Na(+)-driven flagellar motor of Vibrio cholerae to the H(+)-driven motor of Escherichia coli.
    Gosink KK; Häse CC
    J Bacteriol; 2000 Aug; 182(15):4234-40. PubMed ID: 10894732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Roles of motility and flagellar structure in pathogenicity of Vibrio cholerae: analysis of motility mutants in three animal models.
    Richardson K
    Infect Immun; 1991 Aug; 59(8):2727-36. PubMed ID: 1855990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cross-regulation in Vibrio parahaemolyticus: compensatory activation of polar flagellar genes by the lateral flagellar regulator LafK.
    Kim YK; McCarter LL
    J Bacteriol; 2004 Jun; 186(12):4014-8. PubMed ID: 15175315
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of flagellar gene regulation in Legionella pneumophila and its relation to growth phase.
    Albert-Weissenberger C; Sahr T; Sismeiro O; Hacker J; Heuner K; Buchrieser C
    J Bacteriol; 2010 Jan; 192(2):446-55. PubMed ID: 19915024
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flagellar motility, extracellular proteases and Vibrio cholerae detachment from abiotic and biotic surfaces.
    Mewborn L; Benitez JA; Silva AJ
    Microb Pathog; 2017 Dec; 113():17-24. PubMed ID: 29038053
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of HubP-dependent cell pole protein targeting in Vibrio cholerae uncovers novel motility regulators.
    Altinoglu I; Abriat G; Carreaux A; Torres-Sánchez L; Poidevin M; Krasteva PV; Yamaichi Y
    PLoS Genet; 2022 Jan; 18(1):e1009991. PubMed ID: 35020734
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pleiotropic effects of the twin-arginine translocation system on biofilm formation, colonization, and virulence in Vibrio cholerae.
    Zhang L; Zhu Z; Jing H; Zhang J; Xiong Y; Yan M; Gao S; Wu LF; Xu J; Kan B
    BMC Microbiol; 2009 May; 9():114. PubMed ID: 19480715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of sodium bioenergetics in Vibrio cholerae.
    Häse CC; Barquera B
    Biochim Biophys Acta; 2001 May; 1505(1):169-78. PubMed ID: 11248198
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crash landing of
    Zhang W; Luo M; Feng C; Liu H; Zhang H; Bennett RR; Utada AS; Liu Z; Zhao K
    Elife; 2021 Jul; 10():. PubMed ID: 34212857
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.