These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. EXEL-8232, a small-molecule JAK2 inhibitor, effectively treats thrombocytosis and extramedullary hematopoiesis in a murine model of myeloproliferative neoplasm induced by MPLW515L. Wernig G; Kharas MG; Mullally A; Leeman DS; Okabe R; George T; Clary DO; Gilliland DG Leukemia; 2012 Apr; 26(4):720-7. PubMed ID: 22005786 [TBL] [Abstract][Full Text] [Related]
5. The small molecule inhibitor G6 significantly reduces bone marrow fibrosis and the mutant burden in a mouse model of Jak2-mediated myelofibrosis. Kirabo A; Park SO; Wamsley HL; Gali M; Baskin R; Reinhard MK; Zhao ZJ; Bisht KS; Keserű GM; Cogle CR; Sayeski PP Am J Pathol; 2012 Sep; 181(3):858-65. PubMed ID: 22796437 [TBL] [Abstract][Full Text] [Related]
6. TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations. Pardanani A; Hood J; Lasho T; Levine RL; Martin MB; Noronha G; Finke C; Mak CC; Mesa R; Zhu H; Soll R; Gilliland DG; Tefferi A Leukemia; 2007 Aug; 21(8):1658-68. PubMed ID: 17541402 [TBL] [Abstract][Full Text] [Related]
8. INCB16562, a JAK1/2 selective inhibitor, is efficacious against multiple myeloma cells and reverses the protective effects of cytokine and stromal cell support. Li J; Favata M; Kelley JA; Caulder E; Thomas B; Wen X; Sparks RB; Arvanitis A; Rogers JD; Combs AP; Vaddi K; Solomon KA; Scherle PA; Newton R; Fridman JS Neoplasia; 2010 Jan; 12(1):28-38. PubMed ID: 20072651 [TBL] [Abstract][Full Text] [Related]
9. Discovery and evaluation of ZT55, a novel highly-selective tyrosine kinase inhibitor of JAK2 Hu M; Xu C; Yang C; Zuo H; Chen C; Zhang D; Shi G; Wang W; Shi J; Zhang T J Exp Clin Cancer Res; 2019 Feb; 38(1):49. PubMed ID: 30717771 [TBL] [Abstract][Full Text] [Related]
10. Structure-function correlation of G6, a novel small molecule inhibitor of Jak2: indispensability of the stilbenoid core. Majumder A; Govindasamy L; Magis A; Kiss R; Polgár T; Baskin R; Allan RW; Agbandje-McKenna M; Reuther GW; Keseru GM; Bisht KS; Sayeski PP J Biol Chem; 2010 Oct; 285(41):31399-407. PubMed ID: 20667821 [TBL] [Abstract][Full Text] [Related]
11. Intrinsic resistance to JAK2 inhibition in myelofibrosis. Kalota A; Jeschke GR; Carroll M; Hexner EO Clin Cancer Res; 2013 Apr; 19(7):1729-39. PubMed ID: 23386690 [TBL] [Abstract][Full Text] [Related]
12. JAK1/2 and Pan-deacetylase inhibitor combination therapy yields improved efficacy in preclinical mouse models of JAK2V617F-driven disease. Evrot E; Ebel N; Romanet V; Roelli C; Andraos R; Qian Z; Dölemeyer A; Dammassa E; Sterker D; Cozens R; Hofmann F; Murakami M; Baffert F; Radimerski T Clin Cancer Res; 2013 Nov; 19(22):6230-41. PubMed ID: 24081976 [TBL] [Abstract][Full Text] [Related]
13. The Development and Use of Janus Kinase 2 Inhibitors for the Treatment of Myeloproliferative Neoplasms. Hobbs GS; Rozelle S; Mullally A Hematol Oncol Clin North Am; 2017 Aug; 31(4):613-626. PubMed ID: 28673391 [TBL] [Abstract][Full Text] [Related]
14. Narrative review: Thrombocytosis, polycythemia vera, and JAK2 mutations: The phenotypic mimicry of chronic myeloproliferation. Spivak JL Ann Intern Med; 2010 Mar; 152(5):300-6. PubMed ID: 20194236 [TBL] [Abstract][Full Text] [Related]
15. Limited efficacy of BMS-911543 in a murine model of Janus kinase 2 V617F myeloproliferative neoplasm. Pomicter AD; Eiring AM; Senina AV; Zabriskie MS; Marvin JE; Prchal JT; O'Hare T; Deininger MW Exp Hematol; 2015 Jul; 43(7):537-45.e1-11. PubMed ID: 25912019 [TBL] [Abstract][Full Text] [Related]
16. RAS signaling promotes resistance to JAK inhibitors by suppressing BAD-mediated apoptosis. Winter PS; Sarosiek KA; Lin KH; Meggendorfer M; Schnittger S; Letai A; Wood KC Sci Signal; 2014 Dec; 7(357):ra122. PubMed ID: 25538080 [TBL] [Abstract][Full Text] [Related]
17. Overview of Transgenic Mouse Models of Myeloproliferative Neoplasms (MPNs). Dunbar A; Nazir A; Levine R Curr Protoc Pharmacol; 2017 Jun; 77():14.40.1-14.40.19. PubMed ID: 28640953 [TBL] [Abstract][Full Text] [Related]
18. JAK-STAT signaling in the therapeutic landscape of myeloproliferative neoplasms. O'Sullivan JM; Harrison CN Mol Cell Endocrinol; 2017 Aug; 451():71-79. PubMed ID: 28167129 [TBL] [Abstract][Full Text] [Related]
19. Thrombopoietin receptor down-modulation by JAK2 V617F: restoration of receptor levels by inhibitors of pathologic JAK2 signaling and of proteasomes. Pecquet C; Diaconu CC; Staerk J; Girardot M; Marty C; Royer Y; Defour JP; Dusa A; Besancenot R; Giraudier S; Villeval JL; Knoops L; Courtoy PJ; Vainchenker W; Constantinescu SN Blood; 2012 May; 119(20):4625-35. PubMed ID: 22378845 [TBL] [Abstract][Full Text] [Related]
20. CHZ868, a Type II JAK2 Inhibitor, Reverses Type I JAK Inhibitor Persistence and Demonstrates Efficacy in Myeloproliferative Neoplasms. Meyer SC; Keller MD; Chiu S; Koppikar P; Guryanova OA; Rapaport F; Xu K; Manova K; Pankov D; O'Reilly RJ; Kleppe M; McKenney AS; Shih AH; Shank K; Ahn J; Papalexi E; Spitzer B; Socci N; Viale A; Mandon E; Ebel N; Andraos R; Rubert J; Dammassa E; Romanet V; Dölemeyer A; Zender M; Heinlein M; Rampal R; Weinberg RS; Hoffman R; Sellers WR; Hofmann F; Murakami M; Baffert F; Gaul C; Radimerski T; Levine RL Cancer Cell; 2015 Jul; 28(1):15-28. PubMed ID: 26175413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]