These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 20154375)

  • 1. Spatially resolved Raman spectroscopy on indium-catalyzed core-shell germanium nanowires: size effects.
    Xiang Y; Zardo I; Cao LY; Garma T; Heiss M; Morante JR; Arbiol J; Brongersma ML; Fontcuberta I Morral A
    Nanotechnology; 2010 Mar; 21(10):105703. PubMed ID: 20154375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single crystalline and core-shell indium-catalyzed germanium nanowires-a systematic thermal CVD growth study.
    Xiang Y; Cao L; Conesa-Boj S; Estrade S; Arbiol J; Peiro F; Heiss M; Zardo I; Morante JR; Brongersma ML; Fontcuberta I Morral A
    Nanotechnology; 2009 Jun; 20(24):245608. PubMed ID: 19471084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homogeneous core/shell ZnO/ZnMgO quantum well heterostructures on vertical ZnO nanowires.
    Cao BQ; Zúñiga-Pérez J; Boukos N; Czekalla C; Hilmer H; Lenzner J; Travlos A; Lorenz M; Grundmann M
    Nanotechnology; 2009 Jul; 20(30):305701. PubMed ID: 19584419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale synthesis and phase transformation of CuSe, CuInSe2, and CuInSe2/CuInS2 core/shell nanowire bundles.
    Xu J; Lee CS; Tang YB; Chen X; Chen ZH; Zhang WJ; Lee ST; Zhang W; Yang Z
    ACS Nano; 2010 Apr; 4(4):1845-50. PubMed ID: 20210350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epitaxial core-shell and core-multishell nanowire heterostructures.
    Lauhon LJ; Gudiksen MS; Wang D; Lieber CM
    Nature; 2002 Nov; 420(6911):57-61. PubMed ID: 12422212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative heat dissipation characteristics in current-carrying GaN nanowires probed by combining scanning thermal microscopy and spatially resolved Raman spectroscopy.
    Soudi A; Dawson RD; Gu Y
    ACS Nano; 2011 Jan; 5(1):255-62. PubMed ID: 21155591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seedless growth of sub-10 nm germanium nanowires.
    Hobbs RG; Barth S; Petkov N; Zirngast M; Marschner C; Morris MA; Holmes JD
    J Am Chem Soc; 2010 Oct; 132(39):13742-9. PubMed ID: 20836555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation of Se@Ag2Se core--shell colloids and nanowires into trigonal se nanorods and uniform spherical Ag2Se colloids.
    Moon GD; Jeong U
    Langmuir; 2009 Jan; 25(1):458-65. PubMed ID: 19067506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-organized hierarchical ZnS/SiO(2) nanowire heterostructures.
    Shen G; Bando Y; Tang C; Golberg D
    J Phys Chem B; 2006 Apr; 110(14):7199-202. PubMed ID: 16599486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From shelled Ge nanowires to SiC nanotubes.
    Drínek V; Subrt J; Klementová M; Rieder M; Fajgar R
    Nanotechnology; 2009 Jan; 20(3):035606. PubMed ID: 19417301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vapor-liquid-solid and vapor-solid growth of phase-change Sb2Te3 nanowires and Sb2Te3/GeTe nanowire heterostructures.
    Lee JS; Brittman S; Yu D; Park H
    J Am Chem Soc; 2008 May; 130(19):6252-8. PubMed ID: 18402451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical breakdown and nanogap formation of indium oxide core/shell heterostructure nanowires.
    Jung M; Song W; Sung Lee J; Kim N; Kim J; Park J; Lee H; Hirakawa K
    Nanotechnology; 2008 Dec; 19(49):495702. PubMed ID: 21730682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled synthesis of Ag/TiO2 core-shell nanowires with smooth and bristled surfaces via a one-step solution route.
    Du J; Zhang J; Liu Z; Han B; Jiang T; Huang Y
    Langmuir; 2006 Jan; 22(3):1307-12. PubMed ID: 16430298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring the crystal structure of individual silicon nanowires by polarized laser annealing.
    Chang CC; Chen H; Chen CC; Hung WH; Hsu IK; Theiss J; Zhou C; Cronin SB
    Nanotechnology; 2011 Jul; 22(30):305709. PubMed ID: 21719968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical properties of indium phosphide nanowire ensembles at various temperatures.
    Lohn AJ; Onishi T; Kobayashi NP
    Nanotechnology; 2010 Sep; 21(35):355702. PubMed ID: 20689159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clear Experimental Demonstration of Hole Gas Accumulation in Ge/Si Core-Shell Nanowires.
    Fukata N; Yu M; Jevasuwan W; Takei T; Bando Y; Wu W; Wang ZL
    ACS Nano; 2015 Dec; 9(12):12182-8. PubMed ID: 26554299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled growth of large-area, uniform, vertically aligned arrays of alpha-Fe2O3 nanobelts and nanowires.
    Wen X; Wang S; Ding Y; Wang ZL; Yang S
    J Phys Chem B; 2005 Jan; 109(1):215-20. PubMed ID: 16851007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of indium-doped ZnO nanowires with periodical single-twin structures.
    Xu L; Su Y; Chen Y; Xiao H; Zhu LA; Zhou Q; Li S
    J Phys Chem B; 2006 Apr; 110(13):6637-42. PubMed ID: 16570966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Template assisted electrodeposition of germanium and silicon nanowires in an ionic liquid.
    Al-Salman R; Mallet J; Molinari M; Fricoteaux P; Martineau F; Troyon M; Zein El Abedin S; Endres F
    Phys Chem Chem Phys; 2008 Nov; 10(41):6233-7. PubMed ID: 18936846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ monitoring of Joule heating effects in germanium nanowires by μ-Raman spectroscopy.
    Lugstein A; Mijić M; Burchhart T; Zeiner C; Langegger R; Schneider M; Schmid U; Bertagnolli E
    Nanotechnology; 2013 Feb; 24(6):065701. PubMed ID: 23324520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.