These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 20154686)

  • 1. High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin.
    Shibata M; Yamashita H; Uchihashi T; Kandori H; Ando T
    Nat Nanotechnol; 2010 Mar; 5(3):208-12. PubMed ID: 20154686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contact-mode high-resolution high-speed atomic force microscopy movies of the purple membrane.
    Casuso I; Kodera N; Le Grimellec C; Ando T; Scheuring S
    Biophys J; 2009 Sep; 97(5):1354-61. PubMed ID: 19720023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of trimer-trimer interaction of bacteriorhodopsin studied by optical spectroscopy and high-speed atomic force microscopy.
    Yamashita H; Inoue K; Shibata M; Uchihashi T; Sasaki J; Kandori H; Ando T
    J Struct Biol; 2013 Oct; 184(1):2-11. PubMed ID: 23462099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible loss of crystallinity on photobleaching purple membrane in the presence of hydroxylamine.
    Möller C; Büldt G; Dencher NA; Engel A; Müller DJ
    J Mol Biol; 2000 Aug; 301(4):869-79. PubMed ID: 10966792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane.
    Müller DJ; Sass HJ; Müller SA; Büldt G; Engel A
    J Mol Biol; 1999 Feb; 285(5):1903-9. PubMed ID: 9925773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tip-Enhanced Infrared Difference-Nanospectroscopy of the Proton Pump Activity of Bacteriorhodopsin in Single Purple Membrane Patches.
    Giliberti V; Polito R; Ritter E; Broser M; Hegemann P; Puskar L; Schade U; Zanetti-Polzi L; Daidone I; Corni S; Rusconi F; Biagioni P; Baldassarre L; Ortolani M
    Nano Lett; 2019 May; 19(5):3104-3114. PubMed ID: 30950626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immuno-atomic force microscopy of purple membrane.
    Müller DJ; Schoenenberger CA; Büldt G; Engel A
    Biophys J; 1996 Apr; 70(4):1796-802. PubMed ID: 8785339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular machines directly observed by high-speed atomic force microscopy.
    Ando T
    FEBS Lett; 2013 Apr; 587(8):997-1007. PubMed ID: 23318713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric distribution of biotin labeling on the purple membrane.
    Su T; Zhong S; Zhang Y; Hu KS
    J Photochem Photobiol B; 2008 Aug; 92(2):123-7. PubMed ID: 18619849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-dependent bending in and out of purple membranes comprising BR-D85T.
    Baumann RP; Eussner J; Hampp N
    Phys Chem Chem Phys; 2011 Dec; 13(48):21375-82. PubMed ID: 22033510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of bacteriorhodopsin in solid-supported purple membranes studied with tapping-mode atomic force microscopy.
    Schranz M; Baumann RP; Rhinow D; Hampp N
    J Phys Chem B; 2010 Jul; 114(27):9047-53. PubMed ID: 20509702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural changes in bacteriorhodopsin caused by two-photon-induced photobleaching.
    Rhinow D; Imhof M; Chizhik I; Baumann RP; Hampp N
    J Phys Chem B; 2012 Jun; 116(25):7455-62. PubMed ID: 22512248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray crystallographic analysis of lipid-protein interactions in the bacteriorhodopsin purple membrane.
    Cartailler JP; Luecke H
    Annu Rev Biophys Biomol Struct; 2003; 32():285-310. PubMed ID: 12598369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of bacteriorhodopsin alpha-helices and loops analyzed by single-molecule force spectroscopy.
    Müller DJ; Kessler M; Oesterhelt F; Möller C; Oesterhelt D; Gaub H
    Biophys J; 2002 Dec; 83(6):3578-88. PubMed ID: 12496125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of bacteriorhodopsin 2D crystal observed by high-speed atomic force microscopy.
    Yamashita H; Voïtchovsky K; Uchihashi T; Contera SA; Ryan JF; Ando T
    J Struct Biol; 2009 Aug; 167(2):153-8. PubMed ID: 19416755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directly probing rapid membrane protein dynamics with an atomic force microscope: a study of light-induced conformational alterations in bacteriorhodopsin.
    Lewis A; Rousso I; Khachatryan E; Brodsky I; Lieberman K; Sheves M
    Biophys J; 1996 May; 70(5):2380-4. PubMed ID: 9172763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purple membrane lipid control of bacteriorhodopsin conformational flexibility and photocycle activity.
    Hendler RW; Barnett SM; Dracheva S; Bose S; Levin IW
    Eur J Biochem; 2003 May; 270(9):1920-5. PubMed ID: 12709050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force-induced conformational change of bacteriorhodopsin.
    Müller DJ; Büldt G; Engel A
    J Mol Biol; 1995 Jun; 249(2):239-43. PubMed ID: 7783190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhomogeneous stability of bacteriorhodopsin in purple membrane against photobleaching at high temperature.
    Yokoyama Y; Sonoyama M; Mitaku S
    Proteins; 2004 Feb; 54(3):442-54. PubMed ID: 14747993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical and electric signals from dried oriented purple membrane of bacteriorhodopsins.
    Tóth-Boconádi R; Dér A; Keszthelyi L
    Bioelectrochemistry; 2011 Apr; 81(1):17-21. PubMed ID: 21236739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.