These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 20154692)

  • 21. Over 65% Sunlight Absorption in a 1 μm Si Slab with Hyperuniform Texture.
    Tavakoli N; Spalding R; Lambertz A; Koppejan P; Gkantzounis G; Wan C; Röhrich R; Kontoleta E; Koenderink AF; Sapienza R; Florescu M; Alarcon-Llado E
    ACS Photonics; 2022 Apr; 9(4):1206-1217. PubMed ID: 35480493
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effective method to extract optical bandgaps in Si nanowire arrays.
    Jung JY; Zhou K; Um HD; Guo Z; Jee SW; Park KT; Lee JH
    Opt Lett; 2011 Jul; 36(14):2677-9. PubMed ID: 21765506
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of two-dimensional nanorod arrays with slanted ITO film to enhance optical absorption for photovoltaic applications.
    Yao YC; Tsai MT; Hsu HC; She LW; Cheng CM; Chen YC; Wu CJ; Lee YJ
    Opt Express; 2012 Feb; 20(4):3479-89. PubMed ID: 22418107
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sub-bandgap near-infrared photovoltaic response in Au/Al
    Dai X; Wu L; Yu L; Yu Z; Ma F; Zhang Y; Yang Y; Sun J; Lu M
    Discov Nano; 2023 Mar; 18(1):33. PubMed ID: 36881340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strong light absorption of self-organized 3-D nanospike arrays for photovoltaic applications.
    Yu R; Ching KL; Lin Q; Leung SF; Arcrossito D; Fan Z
    ACS Nano; 2011 Nov; 5(11):9291-8. PubMed ID: 22017229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Achieving an Accurate Surface Profile of a Photonic Crystal for Near-Unity Solar Absorption in a Super Thin-Film Architecture.
    Kuang P; Eyderman S; Hsieh ML; Post A; John S; Lin SY
    ACS Nano; 2016 Jun; 10(6):6116-24. PubMed ID: 27258082
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GaAs nanopillar-array solar cells employing in situ surface passivation.
    Mariani G; Scofield AC; Hung CH; Huffaker DL
    Nat Commun; 2013; 4():1497. PubMed ID: 23422665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Semiconductor solar superabsorbers.
    Yu Y; Huang L; Cao L
    Sci Rep; 2014 Feb; 4():4107. PubMed ID: 24531211
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Broadband high efficiency silicon nanowire arrays with radial diversity within diamond-like geometrical distribution for photovoltaic applications.
    Al-Zoubi OH; Said TM; Alher MA; El-Ghazaly S; Naseem H
    Opt Express; 2015 Jul; 23(15):A767-78. PubMed ID: 26367679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications.
    Mavrokefalos A; Han SE; Yerci S; Branham MS; Chen G
    Nano Lett; 2012 Jun; 12(6):2792-6. PubMed ID: 22612694
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Geometry-driven carrier extraction enhancement in photovoltaic cells based on arrays of subwavelength light funnels.
    Prajapati A; Shalev G
    Nanoscale Adv; 2019 Dec; 1(12):4755-4763. PubMed ID: 36133141
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanowire decorated, ultra-thin, single crystalline silicon for photovoltaic devices.
    Aurang P; Turan R; Unalan HE
    Nanotechnology; 2017 Oct; 28(40):405205. PubMed ID: 28895553
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays.
    Wang ZY; Zhang RJ; Wang SY; Lu M; Chen X; Zheng YX; Chen LY; Ye Z; Wang CZ; Ho KM
    Sci Rep; 2015 Jan; 5():7810. PubMed ID: 25589290
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multilayer nanoparticle arrays for broad spectrum absorption enhancement in thin film solar cells.
    Krishnan A; Das S; Krishna SR; Khan MZ
    Opt Express; 2014 May; 22 Suppl 3():A800-11. PubMed ID: 24922387
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers.
    van Dam D; van Hoof NJ; Cui Y; van Veldhoven PJ; Bakkers EP; Gómez Rivas J; Haverkort JE
    ACS Nano; 2016 Dec; 10(12):11414-11419. PubMed ID: 28024324
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Silicon Microwire Arrays with Nanoscale Spacing for Radial Junction c-Si Solar Cells with an Efficiency of 20.5.
    Kim N; Choi D; Kim H; Um HD; Seo K
    ACS Nano; 2021 Sep; 15(9):14756-14765. PubMed ID: 34583468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Broadband light trapping strategies for quantum-dot photovoltaic cells (>10%) and their issues with the measurement of photovoltaic characteristics.
    Cho C; Song JH; Kim C; Jeong S; Lee JY
    Sci Rep; 2017 Dec; 7(1):17393. PubMed ID: 29234046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ray optical light trapping in silicon microwires: exceeding the 2n(2) intensity limit.
    Kosten ED; Warren EL; Atwater HA
    Opt Express; 2011 Feb; 19(4):3316-31. PubMed ID: 21369154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting suitable optoelectronic properties of monoclinic VON semiconductor crystals for photovoltaics using accurate first-principles computations.
    Harb M
    Phys Chem Chem Phys; 2015 Oct; 17(38):25244-9. PubMed ID: 26351755
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Semiconductor nanowire optical antenna solar absorbers.
    Cao L; Fan P; Vasudev AP; White JS; Yu Z; Cai W; Schuller JA; Fan S; Brongersma ML
    Nano Lett; 2010 Feb; 10(2):439-45. PubMed ID: 20078065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.