These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 20154918)

  • 1. Machining of optics: an introduction.
    Saito TT
    Appl Opt; 1975 Aug; 14(8):1773-6. PubMed ID: 20154918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tool feed influence on the machinability of CO(2) laser optics.
    Arnold JB; Steger PJ; Saito TT
    Appl Opt; 1975 Aug; 14(8):1777-82. PubMed ID: 20154919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser Induced Damage in Optical Materials: 6th ASTM Symposium.
    Glass AJ; Guenther AH
    Appl Opt; 1975 Mar; 14(3):698. PubMed ID: 20134954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machining approach of freeform optics on infrared materials via ultra-precision turning.
    Li Z; Fang F; Chen J; Zhang X
    Opt Express; 2017 Feb; 25(3):2051-2062. PubMed ID: 29519053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Machining Errors on Optical Performance of Optical Aspheric Components in Ultra-Precision Diamond Turning.
    Li Y; Zhang Y; Lin J; Yi A; Zhou X
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32210145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of large scale nanostructures based on a modified atomic force microscope nanomechanical machining system.
    Hu ZJ; Yan YD; Zhao XS; Gao DW; Wei YY; Wang JH
    Rev Sci Instrum; 2011 Dec; 82(12):125102. PubMed ID: 22225244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient machining of non-circular freeform optics using fast tool servo assisted ultra-precision turning.
    Li Z; Fang F; Zhang X; Liu X; Gao H
    Opt Express; 2017 Oct; 25(21):25243-25256. PubMed ID: 29041194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deconvolution of surface topology for quantification of initial wear in highly cross-linked acetabular components for THA.
    Kurtz SM; Turner JL; Herr M; Edidin AA
    J Biomed Mater Res; 2002; 63(5):492-500. PubMed ID: 12209892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team.
    Hrubiak R; Sinogeikin S; Rod E; Shen G
    Rev Sci Instrum; 2015 Jul; 86(7):072202. PubMed ID: 26233342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictive models for the Strehl ratio of diamond-machined optics.
    Aryan H; Liang K; Alonso MA; Suleski TJ
    Appl Opt; 2019 Apr; 58(12):3272-3276. PubMed ID: 31044807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic abrasive machining system for optical fabrication with 0.1-mm spatial resolution.
    Matsuzawa Y; Hiraguri K; Hashizume H; Mimura H
    Rev Sci Instrum; 2022 Jan; 93(1):013101. PubMed ID: 35104977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion beam machining error control and correction for small scale optics.
    Xie X; Zhou L; Dai Y; Li S
    Appl Opt; 2011 Sep; 50(27):5221-7. PubMed ID: 21947039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical effect and pre-forming temperature field of in situ laser-assisted micro-stamping by a diamond indenter.
    Meng S; Shi G; Zou C; Li H; Yao D; Gao Y
    Appl Opt; 2022 Apr; 61(11):3269-3278. PubMed ID: 35471308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance characteristics of single point diamond machined metal mirrors for infrared laser applications.
    Saito TT; Simmons LB
    Appl Opt; 1974 Nov; 13(11):2647-50. PubMed ID: 20134748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper electroplating of non-aqueous elastomeric impression materials: a subjective appraisal of their platability.
    Payne JA; Jeganathan S
    Singapore Dent J; 1994 Jan; 19(1):14-7. PubMed ID: 9582678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous machining of parallel grooves in SnO(2) thin films using a Nd:YAG laser and a kinoform.
    Holmér AK
    Appl Opt; 1996 May; 35(15):2614-8. PubMed ID: 21085406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive tool servo diamond turning for enhancing machining efficiency and surface quality of freeform optics.
    Zhu Z; To S
    Opt Express; 2015 Aug; 23(16):20234-48. PubMed ID: 26367879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ noncontact measurement system and two-step compensation strategy for ultra-precision diamond machining.
    Yu J; Shen Z; Wang X; Sheng P; Wang Z
    Opt Express; 2018 Nov; 26(23):30724-30739. PubMed ID: 30469965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape correction of optical surfaces using plasma chemical vaporization machining with a hemispherical tip electrode.
    Takino H; Yamamura K; Sano Y; Mori Y
    Appl Opt; 2012 Jan; 51(3):401-7. PubMed ID: 22270670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boron-doped diamond microdisc arrays: electrochemical characterisation and their use as a substrate for the production of microelectrode arrays of diverse metals (Ag, Au, Cu)via electrodeposition.
    Simm AO; Banks CE; Ward-Jones S; Davies TJ; Lawrence NS; Jones TG; Jiang L; Compton RG
    Analyst; 2005 Sep; 130(9):1303-11. PubMed ID: 16096678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.