These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 20155213)
1. Attenuation measurement in glasses for optical communications: an immersion method. Heitmann W Appl Opt; 1976 Jan; 15(1):256-60. PubMed ID: 20155213 [TBL] [Abstract][Full Text] [Related]
2. Attenuation measurement in low-loss optical glass by polarized radiation. Heitmann W Appl Opt; 1975 Dec; 14(12):3047-52. PubMed ID: 20155151 [TBL] [Abstract][Full Text] [Related]
3. Precision measurements of the optical attenuation profile along the propagation path in thin-film waveguides. Teng CC Appl Opt; 1993 Mar; 32(7):1051-4. PubMed ID: 20820230 [TBL] [Abstract][Full Text] [Related]
5. Comment on the reported fiber attenuations in the visible regime in "Fabrication of glass photonic crystal fibers with a die-cast process". Feng X; Loh WH; Richardson DJ Appl Opt; 2008 Oct; 47(28):5078-80; discussion 5081. PubMed ID: 18830293 [TBL] [Abstract][Full Text] [Related]
6. Radiation damage of optical fiber waveguides at long wavelengths. Friebele EJ; Gingerich ME; Long KJ Appl Opt; 1982 Feb; 21(3):547-53. PubMed ID: 20372492 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of material dispersion using a nanosecond optical pulse radiator. Horiguchi M; Ohmori Y; Miya T Appl Opt; 1979 Jul; 18(13):2223-8. PubMed ID: 20212637 [TBL] [Abstract][Full Text] [Related]
11. Measurement technique of OH-ion distribution profile in rod preform of silica-based optical fiber waveguides. Horiguchi M; Kawachi M Appl Opt; 1978 Aug; 17(16):2570-4. PubMed ID: 20203823 [TBL] [Abstract][Full Text] [Related]
12. Radiation-induced changes in refractive index and absorption coefficient for several optical materials. Olson DR; Dieselman HD; Schroeder JB Appl Opt; 1971 Jan; 10(1):81-6. PubMed ID: 20094396 [TBL] [Abstract][Full Text] [Related]
13. Transmission characteristics of three corning multimode optical fibers. Cherin AH; Cohen LG; Holden WS; Burrus CA; Kaiser P Appl Opt; 1974 Oct; 13(10):2359-64. PubMed ID: 20134690 [TBL] [Abstract][Full Text] [Related]
14. Optical properties of small-bore hollow glass waveguides. Matsuura Y; Abel T; Harrington JA Appl Opt; 1995 Oct; 34(30):6842-7. PubMed ID: 21060543 [TBL] [Abstract][Full Text] [Related]
16. Optical properties of new oxide glasses with potential for long-wavelength optical fibers. Wood DL; Nassau K; Chadwick DL Appl Opt; 1982 Dec; 21(23):4276-9. PubMed ID: 20401055 [TBL] [Abstract][Full Text] [Related]
17. Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis. Bliss CL; McMullin JN; Backhouse CJ Lab Chip; 2007 Oct; 7(10):1280-7. PubMed ID: 17896011 [TBL] [Abstract][Full Text] [Related]
18. Optical fibers for communication. Gloge D Appl Opt; 1974 Feb; 13(2):249-54. PubMed ID: 20125968 [TBL] [Abstract][Full Text] [Related]
19. Plasma-enhanced chemical vapor deposition of low-loss SiON optical waveguides at 15-microm wavelength. Bruno F; Guidice MD; Recca R; Testa F Appl Opt; 1991 Nov; 30(31):4560-4. PubMed ID: 20717249 [TBL] [Abstract][Full Text] [Related]
20. Communication at millimetre-submillimetre wavelengths using a ceramic ribbon. Yeh C; Shimabukuro F; Stanton P; Jamnejad V; Imbriale W; Manshadi F Nature; 2000 Apr; 404(6778):584-8. PubMed ID: 10766237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]