BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 20155913)

  • 21. Carotenoid-membrane interactions in liposomes: effect of dipolar, monopolar, and nonpolar carotenoids.
    Wisniewska A; Widomska J; Subczynski WK
    Acta Biochim Pol; 2006; 53(3):475-84. PubMed ID: 16964324
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential accumulation and pigmenting ability of dietary carotenoids in colorful finches.
    McGraw KJ; Hill GE; Navara KJ; Parker RS
    Physiol Biochem Zool; 2004; 77(3):484-91. PubMed ID: 15286921
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of peroxynitrite with carotenoids in human low density lipoproteins.
    Panasenko OM; Sharov VS; Briviba K; Sies H
    Arch Biochem Biophys; 2000 Jan; 373(1):302-5. PubMed ID: 10620353
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of carotenoid bioavailability of whole foods using a Caco-2 cell culture model coupled with an in vitro digestion.
    Liu CS; Glahn RP; Liu RH
    J Agric Food Chem; 2004 Jun; 52(13):4330-7. PubMed ID: 15212488
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time- and media-dependent secondary carotenoid accumulation in Haematococcus pluvialis.
    Grewe C; Griehl C
    Biotechnol J; 2008 Oct; 3(9-10):1232-44. PubMed ID: 18683169
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preferential increase in chylomicron levels of the xanthophylls lutein and zeaxanthin compared to beta-carotene in the human.
    Gärtner C; Stahl W; Sies H
    Int J Vitam Nutr Res; 1996; 66(2):119-25. PubMed ID: 8843986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relationships of body mass index with serum carotenoids, tocopherols and retinol at steady-state and in response to a carotenoid-rich vegetable diet intervention in Filipino schoolchildren.
    Ribaya-Mercado JD; Maramag CC; Tengco LW; Blumberg JB; Solon FS
    Biosci Rep; 2008 Apr; 28(2):97-106. PubMed ID: 18384277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioaccessibility, uptake, and transport of carotenoids from peppers (Capsicum spp.) using the coupled in vitro digestion and human intestinal Caco-2 cell model.
    O'Sullivan L; Jiwan MA; Daly T; O'Brien NM; Aherne SA
    J Agric Food Chem; 2010 May; 58(9):5374-9. PubMed ID: 20329773
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carotenoid interactions.
    van den Berg H
    Nutr Rev; 1999 Jan; 57(1):1-10. PubMed ID: 10047699
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms of Carotenoid Intestinal Absorption: Where Do We Stand?
    Reboul E
    Nutrients; 2019 Apr; 11(4):. PubMed ID: 31013870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparison of lycopene and canthaxanthin absorption: using the rat to study the absorption of non-provitamin A carotenoids.
    Clark RM; Yao L; She L; Furr HC
    Lipids; 1998 Feb; 33(2):159-63. PubMed ID: 9507237
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tropical bat as mammalian model for skin carotenoid metabolism.
    Galván I; Garrido-Fernández J; Ríos J; Pérez-Gálvez A; Rodríguez-Herrera B; Negro JJ
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):10932-7. PubMed ID: 27621447
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Complexes of carbon nanotubes with selected carotenoids.
    Stobinski L; Mazurkiewicz J; Lin HM; Tomasik P
    J Nanosci Nanotechnol; 2005 Dec; 5(12):2121-7. PubMed ID: 16430150
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Closer to clarity on the effect of lipid consumption on fat-soluble vitamin and carotenoid absorption: do we need to close in further?
    Moran NE; Johnson EJ
    Am J Clin Nutr; 2017 Oct; 106(4):969-970. PubMed ID: 28903956
    [No Abstract]   [Full Text] [Related]  

  • 35. Incorporation of carotenoids in aqueous systems: uptake by cultured rat hepatocytes.
    Grolier P; Azaïs-Braesco V; Zelmire L; Fessi H
    Biochim Biophys Acta; 1992 Oct; 1111(1):135-8. PubMed ID: 1390859
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improvement in the stability and bioavailability of pumpkin lutein using β-cyclodextrin microcapsules.
    Shi Z; Kong G; Wang F; Gao H; Wei A; Ren S; Yan X
    Food Sci Nutr; 2023 Jun; 11(6):3067-3074. PubMed ID: 37324919
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proper Controls to Electrochemically Evaluate Carotenoids using β-Cyclodextrin Modified Surfaces.
    Thompson G; Marnoto S; Halpern JM
    ECS Trans; 2017 Oct; 80(10):1177-1187. PubMed ID: 29619145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An improved technique for measuring assimilation efficiency by the
    Wightman JA
    Oecologia; 1975 Dec; 19(4):273-284. PubMed ID: 28309239
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ABSORPTION SPECTRA OF ALPHA AND BETA CAROTENES AND LEAF XANTHOPHYLL AT ROOM AND LIQUID NITROGEN TEMPERATURES.
    Miller ES
    Plant Physiol; 1934 Jan; 9(1):179. PubMed ID: 16652871
    [No Abstract]   [Full Text] [Related]  

  • 40. In vitro intestinal absorption of carotenoids delivered as molecular inclusion complexes with beta-cyclodextrin is not inhibited by high-density lipoproteins.
    Fernández-García E; Carvajal-Lérida I; Rincón F; Ríos JJ; Pérez-Gálvez A
    J Agric Food Chem; 2010 Mar; 58(5):3213-21. PubMed ID: 20155913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.