These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 20156428)

  • 1. Reaction profiles of the interaction between sarin and acetylcholinesterase and the S203C mutant: model nucleophiles and QM/MM potential energy surfaces.
    Beck JM; Hadad CM
    Chem Biol Interact; 2010 Sep; 187(1-3):220-4. PubMed ID: 20156428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the reactivation process of sarin-inhibited acetylcholinesterase with α-nucleophiles: hydroxylamine anion is predicted to be a better antidote with DFT calculations.
    Khan MA; Lo R; Bandyopadhyay T; Ganguly B
    J Mol Graph Model; 2011 Aug; 29(8):1039-46. PubMed ID: 21605992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrolysis of nerve agents by model nucleophiles: a computational study.
    Beck JM; Hadad CM
    Chem Biol Interact; 2008 Sep; 175(1-3):200-3. PubMed ID: 18538754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is it possible to reverse aged acetylcholinesterase inhibited by organophosphorus compounds? Insight from the theoretical study.
    An Y; Zhu Y; Yao Y; Liu J
    Phys Chem Chem Phys; 2016 Apr; 18(14):9838-46. PubMed ID: 27000635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphonylation mechanisms of sarin and acetylcholinesterase: a model DFT study.
    Wang J; Gu J; Leszczynski J
    J Phys Chem B; 2006 Apr; 110(14):7567-73. PubMed ID: 16599539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical synthesis of two series of nerve agent model compounds and their stereoselective interaction with human acetylcholinesterase and human butyrylcholinesterase.
    Barakat NH; Zheng X; Gilley CB; MacDonald M; Okolotowicz K; Cashman JR; Vyas S; Beck JM; Hadad CM; Zhang J
    Chem Res Toxicol; 2009 Oct; 22(10):1669-79. PubMed ID: 19715346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical modeling study for the phosphonylation mechanisms of the catalytic triad of acetylcholinesterase by sarin.
    Wang J; Gu J; Leszczynski J
    J Phys Chem B; 2008 Mar; 112(11):3485-94. PubMed ID: 18303880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrolysis of DFP and the nerve agent (S)-sarin by DFPase proceeds along two different reaction pathways: implications for engineering bioscavengers.
    Wymore T; Field MJ; Langan P; Smith JC; Parks JM
    J Phys Chem B; 2014 May; 118(17):4479-89. PubMed ID: 24720808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleophilic reactivation of sarin-inhibited acetylcholinesterase: a molecular modeling study.
    Delfino RT; Figueroa-Villar JD
    J Phys Chem B; 2009 Jun; 113(24):8402-11. PubMed ID: 19449818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic reaction mechanism of acetylcholinesterase determined by Born-Oppenheimer ab initio QM/MM molecular dynamics simulations.
    Zhou Y; Wang S; Zhang Y
    J Phys Chem B; 2010 Jul; 114(26):8817-25. PubMed ID: 20550161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the catalytic triad and oxyanion hole in acetylcholinesterase catalysis: an ab initio QM/MM study.
    Zhang Y; Kua J; McCammon JA
    J Am Chem Soc; 2002 Sep; 124(35):10572-7. PubMed ID: 12197759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and in vitro kinetic evaluation of N-thiazolylacetamido monoquaternary pyridinium oximes as reactivators of sarin, O-ethylsarin and VX inhibited human acetylcholinesterase (hAChE).
    Valiveti AK; Bhalerao UM; Acharya J; Karade HN; Acharya BN; Raviraju G; Halve AK; Kaushik MP
    Bioorg Med Chem; 2015 Aug; 23(15):4899-4910. PubMed ID: 26043948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and kinetic evidence of aging after organophosphate inhibition of human Cathepsin A.
    Bouknight KD; Jurkouich KM; Compton JR; Khavrutskii IV; Guelta MA; Harvey SP; Legler PM
    Biochem Pharmacol; 2020 Jul; 177():113980. PubMed ID: 32305437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of the catalytic pathway of a cysteine protease: a combined QM/MM study of human cathepsin K.
    Ma S; Devi-Kesavan LS; Gao J
    J Am Chem Soc; 2007 Nov; 129(44):13633-45. PubMed ID: 17935329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. o-Quinone methide as alkylating agent of nitrogen, oxygen, and sulfur nucleophiles. The role of H-bonding and solvent effects on the reactivity through a DFT computational study.
    Di Valentin C; Freccero M; Zanaletti R; Sarzi-Amadè M
    J Am Chem Soc; 2001 Aug; 123(34):8366-77. PubMed ID: 11516286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of aged phosphonylated acetylcholinesterase: nerve agent reaction products at the atomic level.
    Millard CB; Kryger G; Ordentlich A; Greenblatt HM; Harel M; Raves ML; Segall Y; Barak D; Shafferman A; Silman I; Sussman JL
    Biochemistry; 1999 Jun; 38(22):7032-9. PubMed ID: 10353814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the reactivation efficacy of hydroxylamine anion towards VX-inhibited AChE: a computational study.
    Khan MA; Ganguly B
    J Mol Model; 2012 May; 18(5):1801-8. PubMed ID: 21850569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why does the G117H mutation considerably improve the activity of human butyrylcholinesterase against sarin? Insights from quantum mechanical/molecular mechanical free energy calculations.
    Yao Y; Liu J; Zhan CG
    Biochemistry; 2012 Nov; 51(44):8980-92. PubMed ID: 23092211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A DFT study of the unusual substrate-assisted mechanism of Serratia marcescens chitinase B reveals the role of solvent and mutational effect on catalysis.
    Jitonnom J; Sattayanon C; Kungwan N; Hannongbua S
    J Mol Graph Model; 2015 Mar; 56():53-9. PubMed ID: 25545678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-Scale First-Principles Molecular Dynamics Simulations with Electrostatic Embedding: Application to Acetylcholinesterase Catalysis.
    Fattebert JL; Lau EY; Bennion BJ; Huang P; Lightstone FC
    J Chem Theory Comput; 2015 Dec; 11(12):5688-95. PubMed ID: 26642985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.