These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 20157234)

  • 1. Time-resolved photoluminescence investigations on HfO2-capped InP nanowires.
    Münch S; Reitzenstein S; Borgström M; Thelander C; Samuelson L; Worschech L; Forchel A
    Nanotechnology; 2010 Mar; 21(10):105711. PubMed ID: 20157234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallization of HfO2 in InAs/HfO2 core-shell nanowires.
    Rieger T; Jörres T; Vogel J; Biermanns A; Pietsch U; Grützmacher D; Lepsa MI
    Nanotechnology; 2014 Oct; 25(40):405701. PubMed ID: 25211286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blueshift of electroluminescence from single n-InP nanowire/p-Si heterojunctions due to the Burstein-Moss effect.
    Liu C; Dai L; You LP; Xu WJ; Qin GG
    Nanotechnology; 2008 Nov; 19(46):465203. PubMed ID: 21836237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates.
    Javey A; Kim H; Brink M; Wang Q; Ural A; Guo J; McIntyre P; McEuen P; Lundstrom M; Dai H
    Nat Mater; 2002 Dec; 1(4):241-6. PubMed ID: 12618786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. InP and InAs nanowires hetero- and homojunctions: energetic stability and electronic properties.
    Dionízio Moreira M; Venezuela P; Miwa RH
    Nanotechnology; 2010 Jul; 21(28):285204. PubMed ID: 20562482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface chemistry and electrical properties of germanium nanowires.
    Wang D; Chang YL; Wang Q; Cao J; Farmer DB; Gordon RG; Dai H
    J Am Chem Soc; 2004 Sep; 126(37):11602-11. PubMed ID: 15366907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ge/Si nanowire heterostructures as high-performance field-effect transistors.
    Xiang J; Lu W; Hu Y; Wu Y; Yan H; Lieber CM
    Nature; 2006 May; 441(7092):489-93. PubMed ID: 16724062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA functionalization of carbon nanotubes for ultrathin atomic layer deposition of high kappa dielectrics for nanotube transistors with 60 mV/decade switching.
    Lu Y; Bangsaruntip S; Wang X; Zhang L; Nishi Y; Dai H
    J Am Chem Soc; 2006 Mar; 128(11):3518-9. PubMed ID: 16536515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the electrical transport properties of n-type CdS nanowires via Ga doping and their nano-optoelectronic applications.
    Cai J; Jie J; Jiang P; Wu D; Xie C; Wu C; Wang Z; Yu Y; Wang L; Zhang X; Peng Q; Jiang Y
    Phys Chem Chem Phys; 2011 Aug; 13(32):14663-7. PubMed ID: 21709907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoluminescence properties of InAs nanowires grown on GaAs and Si substrates.
    Sun MH; Leong ES; Chin AH; Ning CZ; Cirlin GE; Samsonenko YB; Dubrovskii VG; Chuang L; Chang-Hasnain C
    Nanotechnology; 2010 Aug; 21(33):335705. PubMed ID: 20657047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis and enhanced luminescent properties of ZnO/HfO2 core-shell nanowires.
    Zhang Y; Lu HL; Wang T; Ren QH; Gu YZ; Li DH; Zhang DW
    Nanoscale; 2015 Oct; 7(37):15462-8. PubMed ID: 26339774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of High-κ Dielectrics Integration on ALD-Based MoS
    Mahlouji R; Zhang Y; Verheijen MA; Karwal S; Hofmann JP; Kessels WMM; Bol AA
    ACS Appl Nano Mater; 2024 Aug; 7(16):18786-18800. PubMed ID: 39206351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of radiation tolerance in GaAs/AlGaAs core-shell and InP nanowires.
    Li F; Xie X; Gao Q; Tan L; Zhou Y; Yang Q; Ma J; Fu L; Tan HH; Jagadish C
    Nanotechnology; 2018 Jun; 29(22):225703. PubMed ID: 29451131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of copper incorporation into zinc oxide nanowires.
    Eustis S; Meier DC; Beversluis MR; Nikoobakht B
    ACS Nano; 2008 Feb; 2(2):368-76. PubMed ID: 19206639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of nanocrystal surface structure on the luminescence properties: photoemission study of HF-etched InP nanocrystals.
    Adam S; Talapin DV; Borchert H; Lobo A; McGinley C; de Castro AR; Haase M; Weller H; Möller T
    J Chem Phys; 2005 Aug; 123(8):084706. PubMed ID: 16164320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al
    Black LE; Cavalli A; Verheijen MA; Haverkort JEM; Bakkers EPAM; Kessels WMM
    Nano Lett; 2017 Oct; 17(10):6287-6294. PubMed ID: 28885032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ambipolar and unipolar PbSe nanowire field-effect transistors.
    Kim DK; Vemulkar TR; Oh SJ; Koh WK; Murray CB; Kagan CR
    ACS Nano; 2011 Apr; 5(4):3230-6. PubMed ID: 21405024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic-Layer-Deposition Growth of an Ultrathin HfO
    Xiao M; Qiu C; Zhang Z; Peng LM
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34050-34056. PubMed ID: 28901123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. III-V semiconductor nanowire growth: does arsenic diffuse through the metal nanoparticle catalyst?
    Tizei LH; Chiaramonte T; Ugarte D; Cotta MA
    Nanotechnology; 2009 Jul; 20(27):275604. PubMed ID: 19531855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of nitrogen incorporation in HfO(2) grown on InP by atomic layer deposition: an evolution in structural, chemical, and electrical characteristics.
    Kang YS; Kim DK; Kang HK; Jeong KS; Cho MH; Ko DH; Kim H; Seo JH; Kim DC
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):3896-906. PubMed ID: 24467437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.