BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 20157292)

  • 41. The pyruvate-lactate axis modulates cardiac hypertrophy and heart failure.
    Cluntun AA; Badolia R; Lettlova S; Parnell KM; Shankar TS; Diakos NA; Olson KA; Taleb I; Tatum SM; Berg JA; Cunningham CN; Van Ry T; Bott AJ; Krokidi AT; Fogarty S; Skedros S; Swiatek WI; Yu X; Luo B; Merx S; Navankasattusas S; Cox JE; Ducker GS; Holland WL; McKellar SH; Rutter J; Drakos SG
    Cell Metab; 2021 Mar; 33(3):629-648.e10. PubMed ID: 33333007
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dietary iron deficiency induces ventricular dilation, mitochondrial ultrastructural aberrations and cytochrome c release: involvement of nitric oxide synthase and protein tyrosine nitration.
    Dong F; Zhang X; Culver B; Chew HG; Kelley RO; Ren J
    Clin Sci (Lond); 2005 Sep; 109(3):277-86. PubMed ID: 15877545
    [TBL] [Abstract][Full Text] [Related]  

  • 43. NF-kappaB activation is required for adaptive cardiac hypertrophy.
    Zelarayan L; Renger A; Noack C; Zafiriou MP; Gehrke C; van der Nagel R; Dietz R; de Windt L; Bergmann MW
    Cardiovasc Res; 2009 Dec; 84(3):416-24. PubMed ID: 19620128
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Diacylglycerol kinase zeta rescues G alpha q-induced heart failure in transgenic mice.
    Niizeki T; Takeishi Y; Kitahara T; Arimoto T; Koyama Y; Goto K; Mende U; Kubota I
    Circ J; 2008 Feb; 72(2):309-17. PubMed ID: 18219172
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Alterations in Glucose Metabolism During the Transition to Heart Failure: The Contribution of UCP-2.
    Kutsche HS; Schreckenberg R; Weber M; Hirschhäuser C; Rohrbach S; Li L; Niemann B; Schulz R; Schlüter KD
    Cells; 2020 Feb; 9(3):. PubMed ID: 32120777
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cardiac-specific Conditional Knockout of the 18-kDa Mitochondrial Translocator Protein Protects from Pressure Overload Induced Heart Failure.
    Thai PN; Daugherty DJ; Frederich BJ; Lu X; Deng W; Bers DM; Dedkova EN; Schaefer S
    Sci Rep; 2018 Nov; 8(1):16213. PubMed ID: 30385779
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Desmin filaments and cardiac disease: establishing causality.
    Wang X; Osinska H; Gerdes AM; Robbins J
    J Card Fail; 2002 Dec; 8(6 Suppl):S287-92. PubMed ID: 12555134
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure.
    Nakamura TY; Iwata Y; Arai Y; Komamura K; Wakabayashi S
    Circ Res; 2008 Oct; 103(8):891-9. PubMed ID: 18776042
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Blockade of NF-kappaB using IkappaB alpha dominant-negative mice ameliorates cardiac hypertrophy in myotrophin-overexpressed transgenic mice.
    Young D; Popovic ZB; Jones WK; Gupta S
    J Mol Biol; 2008 Sep; 381(3):559-68. PubMed ID: 18620706
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cytoskeletal remodeling of desmin is a more accurate measure of cardiac dysfunction than fibrosis or myocyte hypertrophy.
    Monreal G; Nicholson LM; Han B; Joshi MS; Phillips AB; Wold LE; Bauer JA; Gerhardt MA
    Life Sci; 2008 Dec; 83(23-24):786-94. PubMed ID: 18955067
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The disruption of invariant natural killer T cells exacerbates cardiac hypertrophy and failure caused by pressure overload in mice.
    Takahashi M; Kinugawa S; Takada S; Kakutani N; Furihata T; Sobirin MA; Fukushima A; Obata Y; Saito A; Ishimori N; Iwabuchi K; Tsutsui H
    Exp Physiol; 2020 Mar; 105(3):489-501. PubMed ID: 31957919
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CaMKII exacerbates heart failure progression by activating class I HDACs.
    Zhang M; Yang X; Zimmerman RJ; Wang Q; Ross MA; Granger JM; Luczak ED; Bedja D; Jiang H; Feng N
    J Mol Cell Cardiol; 2020 Dec; 149():73-81. PubMed ID: 32971072
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neuron-derived orphan receptor-1 modulates cardiac gene expression and exacerbates angiotensin II-induced cardiac hypertrophy.
    Cañes L; Martí-Pàmies I; Ballester-Servera C; Herraiz-Martínez A; Alonso J; Galán M; Nistal JF; Muniesa P; Osada J; Hove-Madsen L; Rodríguez C; Martínez-González J
    Clin Sci (Lond); 2020 Feb; 134(3):359-377. PubMed ID: 31985010
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cardiac hypertrophy - scanned architecture, ultrastructure and cytochemistry of myocardial cells.
    Kawamura K
    Jpn Circ J; 1982 Sep; 46(9):1012-30. PubMed ID: 6213794
    [No Abstract]   [Full Text] [Related]  

  • 55. Microtubules and desmin filaments during onset of heart hypertrophy in rat: a double immunoelectron microscope study.
    Watkins SC; Samuel JL; Marotte F; Bertier-Savalle B; Rappaport L
    Circ Res; 1987 Mar; 60(3):327-36. PubMed ID: 2953507
    [TBL] [Abstract][Full Text] [Related]  

  • 56. GLUT1 deficiency in cardiomyocytes does not accelerate the transition from compensated hypertrophy to heart failure.
    Pereira RO; Wende AR; Olsen C; Soto J; Rawlings T; Zhu Y; Riehle C; Abel ED
    J Mol Cell Cardiol; 2014 Jul; 72():95-103. PubMed ID: 24583251
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Wnt signaling is critical for maladaptive cardiac hypertrophy and accelerates myocardial remodeling.
    Malekar P; Hagenmueller M; Anyanwu A; Buss S; Streit MR; Weiss CS; Wolf D; Riffel J; Bauer A; Katus HA; Hardt SE
    Hypertension; 2010 Apr; 55(4):939-45. PubMed ID: 20177000
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Overexpression of mitochondrial creatine kinase preserves cardiac energetics without ameliorating murine chronic heart failure.
    Cao F; Maguire ML; McAndrew DJ; Lake HA; Neubauer S; Zervou S; Schneider JE; Lygate CA
    Basic Res Cardiol; 2020 Jan; 115(2):12. PubMed ID: 31925563
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cardiomyocyte Hypertrophy in Arrhythmogenic Cardiomyopathy.
    Gerçek M; Gerçek M; Kant S; Simsekyilmaz S; Kassner A; Milting H; Liehn EA; Leube RE; Krusche CA
    Am J Pathol; 2017 Apr; 187(4):752-766. PubMed ID: 28183531
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Caveolin 3-dependent loss of t-tubular I
    Bryant SM; Kong CHT; Watson JJ; Gadeberg HC; James AF; Cannell MB; Orchard CH
    Exp Physiol; 2018 May; 103(5):652-665. PubMed ID: 29473235
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.