BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 20157817)

  • 41. Marker-controlled watershed for lymphoma segmentation in sequential CT images.
    Yan J; Zhao B; Wang L; Zelenetz A; Schwartz LH
    Med Phys; 2006 Jul; 33(7):2452-60. PubMed ID: 16898448
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Automatic 3D liver location and segmentation via convolutional neural network and graph cut.
    Lu F; Wu F; Hu P; Peng Z; Kong D
    Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):171-182. PubMed ID: 27604760
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of threshold and gradient based (18)F-fluoro-deoxy-2-glucose hybrid positron emission tomographic image segmentation methods for liver tumor delineation.
    Altunbas C; Howells C; Proper M; Reddy K; Gan G; DeWitt P; Kavanagh B; Schefter T; Miften M
    Pract Radiat Oncol; 2014; 4(4):217-25. PubMed ID: 25012829
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Liver segmentation for CT images using GVF snake.
    Liu F; Zhao B; Kijewski PK; Wang L; Schwartz LH
    Med Phys; 2005 Dec; 32(12):3699-706. PubMed ID: 16475769
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A proposed framework for consensus-based lung tumour volume auto-segmentation in 4D computed tomography imaging.
    Martin S; Brophy M; Palma D; Louie AV; Yu E; Yaremko B; Ahmad B; Barron JL; Beauchemin SS; Rodrigues G; Gaede S
    Phys Med Biol; 2015 Feb; 60(4):1497-518. PubMed ID: 25611494
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Automatic lung segmentation in functional SPECT images using active shape models trained on reference lung shapes from CT.
    Cheimariotis GA; Al-Mashat M; Haris K; Aletras AH; Jögi J; Bajc M; Maglaveras N; Heiberg E
    Ann Nucl Med; 2018 Feb; 32(2):94-104. PubMed ID: 29236220
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Volumetry of abdominal tumors. Problems--feasibility].
    Helmberger H; Bautz W; Sendler A; Fink U; Gerhardt P
    Radiologe; 1995 Sep; 35(9):587-91. PubMed ID: 8588041
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Whole liver segmentation based on deep learning and manual adjustment for clinical use in SIRT.
    Tang X; Jafargholi Rangraz E; Coudyzer W; Bertels J; Robben D; Schramm G; Deckers W; Maleux G; Baete K; Verslype C; Gooding MJ; Deroose CM; Nuyts J
    Eur J Nucl Med Mol Imaging; 2020 Nov; 47(12):2742-2752. PubMed ID: 32314026
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 50. U-Net based deep learning bladder segmentation in CT urography.
    Ma X; Hadjiiski LM; Wei J; Chan HP; Cha KH; Cohan RH; Caoili EM; Samala R; Zhou C; Lu Y
    Med Phys; 2019 Apr; 46(4):1752-1765. PubMed ID: 30734932
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Use of Spectral Detector Computed Tomography to Improve Liver Segmentation and Volumetry.
    Ng YS; Xi Y; Qian Y; Ananthakrishnan L; Soesbe TC; Lewis M; Lenkinski R; Fielding JR
    J Comput Assist Tomogr; 2020; 44(2):197-203. PubMed ID: 32195798
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Unified Level Set Framework Combining Hybrid Algorithms for Liver and Liver Tumor Segmentation in CT Images.
    Zheng Z; Zhang X; Xu H; Liang W; Zheng S; Shi Y
    Biomed Res Int; 2018; 2018():3815346. PubMed ID: 30159326
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Method for Segmentation of Knee Articular Cartilages Based on Contrast-Enhanced CT Images.
    Myller KAH; Honkanen JTJ; Jurvelin JS; Saarakkala S; Töyräs J; Väänänen SP
    Ann Biomed Eng; 2018 Nov; 46(11):1756-1767. PubMed ID: 30132213
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.
    Hu P; Wu F; Peng J; Bao Y; Chen F; Kong D
    Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):399-411. PubMed ID: 27885540
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tumour delineation in oesophageal cancer - A prospective study of delineation in PET and CT with and without endoscopically placed clip markers.
    Thomas L; Lapa C; Bundschuh RA; Polat B; Sonke JJ; Guckenberger M
    Radiother Oncol; 2015 Aug; 116(2):269-75. PubMed ID: 26364886
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Machine learning-based CT texture analysis to predict HPV status in oropharyngeal squamous cell carcinoma: comparison of 2D and 3D segmentation.
    Ren J; Yuan Y; Qi M; Tao X
    Eur Radiol; 2020 Dec; 30(12):6858-6866. PubMed ID: 32591885
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A new fully automatic and robust algorithm for fast segmentation of liver tissue and tumors from CT scans.
    Massoptier L; Casciaro S
    Eur Radiol; 2008 Aug; 18(8):1658-65. PubMed ID: 18369633
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution.
    Hu P; Wu F; Peng J; Liang P; Kong D
    Phys Med Biol; 2016 Dec; 61(24):8676-8698. PubMed ID: 27880735
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Semi-automatic liver tumor segmentation with hidden Markov measure field model and non-parametric distribution estimation.
    Häme Y; Pollari M
    Med Image Anal; 2012 Jan; 16(1):140-9. PubMed ID: 21742543
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Semiautomatic bladder segmentation on CBCT using a population-based model for multiple-plan ART of bladder cancer.
    Chai X; van Herk M; Betgen A; Hulshof M; Bel A
    Phys Med Biol; 2012 Dec; 57(24):N525-41. PubMed ID: 23190683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.