These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 2015798)

  • 1. Apical cell shape changes during Drosophila imaginal leg disc elongation: a novel morphogenetic mechanism.
    Condic ML; Fristrom D; Fristrom JW
    Development; 1991 Jan; 111(1):23-33. PubMed ID: 2015798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell rearrangement and cell division during the tissue level morphogenesis of evaginating Drosophila imaginal discs.
    Taylor J; Adler PN
    Dev Biol; 2008 Jan; 313(2):739-51. PubMed ID: 18082159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histological analysis of the dynamics of growth of imaginal discs and histoblast nests during the larval development ofDrosophila melanogaster.
    Mandaravally Madhavan M; Schneiderman HA
    Wilehm Roux Arch Dev Biol; 1977 Dec; 183(4):269-305. PubMed ID: 28304865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GFP in living animals reveals dynamic developmental responses to ecdysone during Drosophila metamorphosis.
    Ward RE; Reid P; Bashirullah A; D'Avino PP; Thummel CS
    Dev Biol; 2003 Apr; 256(2):389-402. PubMed ID: 12679111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RhoGAP68F controls transport of adhesion proteins in Rab4 endosomes to modulate epithelial morphogenesis of Drosophila leg discs.
    de Madrid BH; Greenberg L; Hatini V
    Dev Biol; 2015 Mar; 399(2):283-95. PubMed ID: 25617722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genes expressed during imaginal disc morphogenesis: IMP-E1, a gene associated with epithelial cell rearrangement.
    Natzle JE; Fristrom DK; Fristrom JW
    Dev Biol; 1988 Oct; 129(2):428-38. PubMed ID: 2458289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential lateral and basal tension drive folding of Drosophila wing discs through two distinct mechanisms.
    Sui L; Alt S; Weigert M; Dye N; Eaton S; Jug F; Myers EW; Jülicher F; Salbreux G; Dahmann C
    Nat Commun; 2018 Nov; 9(1):4620. PubMed ID: 30397306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Drosophila JNK pathway controls the morphogenesis of imaginal discs during metamorphosis.
    Agnès F; Suzanne M; Noselli S
    Development; 1999 Dec; 126(23):5453-62. PubMed ID: 10556069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. decapentaplegic overexpression affects Drosophila wing and leg imaginal disc development and wingless expression.
    Morimura S; Maves L; Chen Y; Hoffmann FM
    Dev Biol; 1996 Jul; 177(1):136-51. PubMed ID: 8660883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental analysis and squamous morphogenesis of the peripodial epithelium in Drosophila imaginal discs.
    McClure KD; Schubiger G
    Development; 2005 Nov; 132(22):5033-42. PubMed ID: 16236766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression profiling of Drosophila imaginal discs.
    Klebes A; Biehs B; Cifuentes F; Kornberg TB
    Genome Biol; 2002 Jul; 3(8):RESEARCH0038. PubMed ID: 12186645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecular basis for transdetermination in Drosophila imaginal discs: interactions between wingless and decapentaplegic signaling.
    Maves L; Schubiger G
    Development; 1998 Jan; 125(1):115-24. PubMed ID: 9389669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The making of a fly leg: a model for epithelial morphogenesis.
    von Kalm L; Fristrom D; Fristrom J
    Bioessays; 1995 Aug; 17(8):693-702. PubMed ID: 7661850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Larval legs of mulberry silkworm Bombyx mori are prototypes for the adult legs.
    Singh A; Kango-Singh M; Parthasarathy R; Gopinathan KP
    Genesis; 2007 Apr; 45(4):169-76. PubMed ID: 17417803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of the eye-antenna imaginal disc and morphogenesis of the adult head in Drosophila melanogaster.
    Haynie JL; Bryant PJ
    J Exp Zool; 1986 Mar; 237(3):293-308. PubMed ID: 3084703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How functions in leg development during Drosophila metamorphosis.
    Fortier TM; Chatterjee R; Klinedinst S; Baehrecke EH; Woodard CT
    Dev Dyn; 2006 Aug; 235(8):2248-59. PubMed ID: 16732586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. crooked legs encodes a family of zinc finger proteins required for leg morphogenesis and ecdysone-regulated gene expression during Drosophila metamorphosis.
    D'Avino PP; Thummel CS
    Development; 1998 May; 125(9):1733-45. PubMed ID: 9521911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of Wg signaling in the patterning of embryonic leg primordium in Drosophila.
    Kubota K; Goto S; Hayashi S
    Dev Biol; 2003 May; 257(1):117-26. PubMed ID: 12710961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ultrastructure of the developing leg ofDrosophila melanogaster.
    Poodry CA; Schneiderman HA
    Wilhelm Roux Arch Entwickl Mech Org; 1970 Mar; 166(1):1-44. PubMed ID: 28304536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence and expression of IMP-L1, an ecdysone-inducible gene expressed during Drosophila imaginal disc morphogenesis.
    Natzle JE; Robertson JP; Majumdar A; Vesenka GD; Enlow B; Clark KE
    Dev Genet; 1992; 13(5):331-44. PubMed ID: 1292892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.