These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 20158025)

  • 1. Simulations of theoretically informed coarse grain models of polymeric systems.
    Detcheverry FA; Pike DQ; Nealey PF; Müller M; de Pablo JJ
    Faraday Discuss; 2010; 144():111-25; discussion 203-22, 467-81. PubMed ID: 20158025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretically informed coarse grain simulations of polymeric systems.
    Pike DQ; Detcheverry FA; Müller M; de Pablo JJ
    J Chem Phys; 2009 Aug; 131(8):084903. PubMed ID: 19725633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte carlo simulation of coarse grain polymeric systems.
    Detcheverry FA; Pike DQ; Nealey PF; Müller M; de Pablo JJ
    Phys Rev Lett; 2009 May; 102(19):197801. PubMed ID: 19518996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coarse-graining in simulations of multicomponent polymer systems.
    Sethuraman V; Nguyen BH; Ganesan V
    J Chem Phys; 2014 Dec; 141(24):244904. PubMed ID: 25554177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid crystal free energy relaxation by a theoretically informed Monte Carlo method using a finite element quadrature approach.
    Armas-Pérez JC; Hernández-Ortiz JP; de Pablo JJ
    J Chem Phys; 2015 Dec; 143(24):243157. PubMed ID: 26723642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial fluctuations of block copolymers: a coarse-grain molecular dynamics simulation study.
    Srinivas G; Swope WC; Pitera JW
    J Phys Chem B; 2007 Dec; 111(49):13734-42. PubMed ID: 18020436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maier-Saupe model of polymer nematics: Comparing free energies calculated with Self Consistent Field theory and Monte Carlo simulations.
    Greco C; Jiang Y; Chen JZ; Kremer K; Daoulas KC
    J Chem Phys; 2016 Nov; 145(18):184901. PubMed ID: 27846703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control over self-assembly of diblock copolymers on hexagonal and square templates for high area density circuit boards.
    Feng J; Cavicchi KA; Heinz H
    ACS Nano; 2011 Dec; 5(12):9413-20. PubMed ID: 22040321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo phase diagram for diblock copolymer melts.
    Matsen MW; Griffiths GH; Wickham RA; Vassiliev ON
    J Chem Phys; 2006 Jan; 124(2):024904. PubMed ID: 16422645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte-Carlo simulation of ternary blends of block copolymers and homopolymers.
    Pike DQ; Müller M; de Pablo JJ
    J Chem Phys; 2011 Sep; 135(11):114904. PubMed ID: 21950884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The multiscale coarse-graining method: assessing its accuracy and introducing density dependent coarse-grain potentials.
    Izvekov S; Chung PW; Rice BM
    J Chem Phys; 2010 Aug; 133(6):064109. PubMed ID: 20707563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accounting for the ultraviolet divergence in field-theoretic simulations of block copolymer melts.
    Matsen MW; Beardsley TM; Willis JD
    J Chem Phys; 2023 Jan; 158(4):044904. PubMed ID: 36725530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields.
    Armas-Pérez JC; Londono-Hurtado A; Guzmán O; Hernández-Ortiz JP; de Pablo JJ
    J Chem Phys; 2015 Jul; 143(4):044107. PubMed ID: 26233107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coarse-grained Monte Carlo simulations of non-equilibrium systems.
    Liu X; Crocker JC; Sinno T
    J Chem Phys; 2013 Jun; 138(24):244111. PubMed ID: 23822231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the order-disorder transition of compressible diblock copolymer melts.
    Zong J; Wang Q
    J Chem Phys; 2015 Nov; 143(18):184903. PubMed ID: 26567680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computing free energies of interfaces in self-assembling systems.
    Müller M; Daoulas KCh; Norizoe Y
    Phys Chem Chem Phys; 2009 Mar; 11(12):2087-97. PubMed ID: 19280019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase diagrams of block copolymer melts by dissipative particle dynamics simulations.
    Gavrilov AA; Kudryavtsev YV; Chertovich AV
    J Chem Phys; 2013 Dec; 139(22):224901. PubMed ID: 24329087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed self assembly of block copolymers using chemical patterns with sidewall guiding lines, backfilled with random copolymer brushes.
    Pandav G; Durand WJ; Ellison CJ; Willson CG; Ganesan V
    Soft Matter; 2015 Dec; 11(47):9107-14. PubMed ID: 26411259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field-theoretic simulations of random copolymers with structural rigidity.
    Mao S; MacPherson Q; Qin J; Spakowitz AJ
    Soft Matter; 2017 Apr; 13(15):2760-2772. PubMed ID: 28338151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flory-Huggins parameter χ, from binary mixtures of Lennard-Jones particles to block copolymer melts.
    Chremos A; Nikoubashman A; Panagiotopoulos AZ
    J Chem Phys; 2014 Feb; 140(5):054909. PubMed ID: 24511981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.