BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 20158195)

  • 1. Inverted colloidal crystal scaffolds for uniform cartilage regeneration.
    Kuo YC; Tsai YT
    Biomacromolecules; 2010 Mar; 11(3):731-9. PubMed ID: 20158195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heparin-conjugated scaffolds with pore structure of inverted colloidal crystals for cartilage regeneration.
    Kuo YC; Tsai YT
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):616-23. PubMed ID: 21074384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface modification with peptide for enhancing chondrocyte adhesion and cartilage regeneration in porous scaffolds.
    Kuo YC; Wang CC
    Colloids Surf B Biointerfaces; 2011 May; 84(1):63-70. PubMed ID: 21227663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cartilage regeneration by novel polyethylene oxide/chitin/chitosan scaffolds.
    Kuo YC; Ku IN
    Biomacromolecules; 2008 Oct; 9(10):2662-9. PubMed ID: 18771317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerated nerve regeneration using induced pluripotent stem cells in chitin-chitosan-gelatin scaffolds with inverted colloidal crystal geometry.
    Kuo YC; Lin CC
    Colloids Surf B Biointerfaces; 2013 Mar; 103():595-600. PubMed ID: 23261585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation.
    Alves da Silva ML; Crawford A; Mundy JM; Correlo VM; Sol P; Bhattacharya M; Hatton PV; Reis RL; Neves NM
    Acta Biomater; 2010 Mar; 6(3):1149-57. PubMed ID: 19788942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverted colloidal crystal scaffolds with laminin-derived peptides for neuronal differentiation of bone marrow stromal cells.
    Kuo YC; Chiu KH
    Biomaterials; 2011 Jan; 32(3):819-31. PubMed ID: 20974492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of polyethyleneimine-modified scaffolds to the regeneration of cartilaginous tissue.
    Kuo YC; Ku IN
    Biotechnol Prog; 2009; 25(5):1459-67. PubMed ID: 19637393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering.
    Eglin D; Grad S; Gogolewski S; Alini M
    J Biomed Mater Res A; 2010 Jan; 92(1):393-408. PubMed ID: 19191318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cartilage regeneration by culturing chondrocytes in scaffolds grafted with TATVHL peptide.
    Kuo YC; Wang CC
    Colloids Surf B Biointerfaces; 2012 May; 93():235-40. PubMed ID: 22305121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cartilage tissue engineering on fibrous chitosan scaffolds produced by a replica molding technique.
    Ragetly GR; Slavik GJ; Cunningham BT; Schaeffer DJ; Griffon DJ
    J Biomed Mater Res A; 2010 Apr; 93(1):46-55. PubMed ID: 19484774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique.
    Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA
    Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitosan scaffolds: interconnective pore size and cartilage engineering.
    Griffon DJ; Sedighi MR; Schaeffer DV; Eurell JA; Johnson AL
    Acta Biomater; 2006 May; 2(3):313-20. PubMed ID: 16701890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo evaluation of 3-dimensional polycaprolactone scaffolds for cartilage repair in rabbits.
    Martinez-Diaz S; Garcia-Giralt N; Lebourg M; Gómez-Tejedor JA; Vila G; Caceres E; Benito P; Pradas MM; Nogues X; Ribelles JL; Monllau JC
    Am J Sports Med; 2010 Mar; 38(3):509-19. PubMed ID: 20093424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering.
    Dai W; Kawazoe N; Lin X; Dong J; Chen G
    Biomaterials; 2010 Mar; 31(8):2141-52. PubMed ID: 19962751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chondrogenesis in scaffolds with surface modification of elastin and poly-L-lysine.
    Kuo YC; Chung CY
    Colloids Surf B Biointerfaces; 2012 May; 93():85-91. PubMed ID: 22245318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The experimental study of tissue engineered autologous cartilage using chitosan-gelatin complex scaffolds].
    Xia WY; Liu W; Cui L; Shang QX; Liu YC; Zhong W; Cao YL
    Zhonghua Yi Xue Za Zhi; 2003 Apr; 83(7):577-9. PubMed ID: 12887748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of gel concentration, human fibronectin, and cation supplement on the tissue-engineered cartilage.
    Kuo YC; Ku IN
    Biotechnol Prog; 2007; 23(1):238-45. PubMed ID: 17269694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of albumin-grafted scaffolds to promote neocartilage formation.
    Lyu SR; Kuo YC; Lin MH; Hsieh WH; Chuang CW
    Colloids Surf B Biointerfaces; 2012 Mar; 91():296-301. PubMed ID: 22136804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration.
    Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG
    J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.