BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

572 related articles for article (PubMed ID: 20158218)

  • 1. Self-assembling multidomain peptide hydrogels: designed susceptibility to enzymatic cleavage allows enhanced cell migration and spreading.
    Galler KM; Aulisa L; Regan KR; D'Souza RN; Hartgerink JD
    J Am Chem Soc; 2010 Mar; 132(9):3217-23. PubMed ID: 20158218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells.
    Zhou M; Smith AM; Das AK; Hodson NW; Collins RF; Ulijn RV; Gough JE
    Biomaterials; 2009 May; 30(13):2523-30. PubMed ID: 19201459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of matrix metalloprotease sensitive-low molecular weight hyaluronic acid based hydrogels.
    Kim J; Park Y; Tae G; Lee KB; Hwang SJ; Kim IS; Noh I; Sun K
    J Mater Sci Mater Med; 2008 Nov; 19(11):3311-8. PubMed ID: 18496734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [PREPARATION AND BIOCOMPATIBILITY EVALUATION OF A FUNCTIONAL SELF-ASSEMBLING PEPTIDE NANOFIBER HYDROGEL DESIGNED WITH LINKING THE SHORT FUNCTIONAL MOTIF OF BONE MORPHOGENETIC PROTEIN 7].
    Liu L; Wu Y; Tao H; Jia Z; Li X; Wang D; He Q; Ruan D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Apr; 30(4):491-8. PubMed ID: 27411281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalized self-assembling peptide nanofiber hydrogels mimic stem cell niche to control human adipose stem cell behavior in vitro.
    Liu X; Wang X; Wang X; Ren H; He J; Qiao L; Cui FZ
    Acta Biomater; 2013 Jun; 9(6):6798-805. PubMed ID: 23380207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Branched peptides integrate into self-assembled nanostructures and enhance biomechanics of peptidic hydrogels.
    Pugliese R; Fontana F; Marchini A; Gelain F
    Acta Biomater; 2018 Jan; 66():258-271. PubMed ID: 29128535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of self-assembling peptide hydrogelators amenable to bacterial expression.
    Sonmez C; Nagy KJ; Schneider JP
    Biomaterials; 2015 Jan; 37():62-72. PubMed ID: 25453938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence effects of self-assembling multidomain peptide hydrogels on encapsulated SHED cells.
    Kang MK; Colombo JS; D'Souza RN; Hartgerink JD
    Biomacromolecules; 2014 Jun; 15(6):2004-11. PubMed ID: 24813237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene oxide containing self-assembling peptide hybrid hydrogels as a potential 3D injectable cell delivery platform for intervertebral disc repair applications.
    Ligorio C; Zhou M; Wychowaniec JK; Zhu X; Bartlam C; Miller AF; Vijayaraghavan A; Hoyland JA; Saiani A
    Acta Biomater; 2019 Jul; 92():92-103. PubMed ID: 31091473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic Self-Assembling Peptide Hydrogels for Tissue Engineering Applications.
    Lu J; Wang X
    Adv Exp Med Biol; 2018; 1064():297-312. PubMed ID: 30471040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds.
    Zhang H; Park J; Jiang Y; Woodrow KA
    Acta Biomater; 2017 Jun; 55():183-193. PubMed ID: 28365480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchically structured hydrogels utilizing multifunctional assembling peptides for 3D cell culture.
    Hilderbrand AM; Ford EM; Guo C; Sloppy JD; Kloxin AM
    Biomater Sci; 2020 Mar; 8(5):1256-1269. PubMed ID: 31854388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of minimalist co-assembled fluorenylmethyloxycarbonyl self-assembling peptide systems for presentation of multiple bioactive peptides.
    Horgan CC; Rodriguez AL; Li R; Bruggeman KF; Stupka N; Raynes JK; Day L; White JW; Williams RJ; Nisbet DR
    Acta Biomater; 2016 Jul; 38():11-22. PubMed ID: 27131571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical stabilization of proteolytically degradable polyethylene glycol dimethacrylate hydrogels through peptide interaction.
    Lim HJ; Khan Z; Lu X; Perera TH; Wilems TS; Ravivarapu KT; Smith Callahan LA
    Acta Biomater; 2018 Apr; 71():271-278. PubMed ID: 29526829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Assembling Multidomain Peptide Nanofibers for Delivery of Bioactive Molecules and Tissue Regeneration.
    Moore AN; Hartgerink JD
    Acc Chem Res; 2017 Apr; 50(4):714-722. PubMed ID: 28191928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimuli-Responsive, Pentapeptide, Nanofiber Hydrogel for Tissue Engineering.
    Tang JD; Mura C; Lampe KJ
    J Am Chem Soc; 2019 Mar; 141(12):4886-4899. PubMed ID: 30830776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational Design of Short Peptide-Based Hydrogels with MMP-2 Responsiveness for Controlled Anticancer Peptide Delivery.
    Chen C; Zhang Y; Hou Z; Cui X; Zhao Y; Xu H
    Biomacromolecules; 2017 Nov; 18(11):3563-3571. PubMed ID: 28828862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic cross-linking of a nanofibrous peptide hydrogel.
    Bakota EL; Aulisa L; Galler KM; Hartgerink JD
    Biomacromolecules; 2011 Jan; 12(1):82-7. PubMed ID: 21133404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoblastic differentiation on hydrogels fabricated from Ca
    Tsutsumi H; Kawamura M; Mihara H
    Bioorg Med Chem; 2018 Jul; 26(12):3126-3132. PubMed ID: 29699909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic MMP-13 degradable ECMs based on poly(N-isopropylacrylamide-co-acrylic acid) semi-interpenetrating polymer networks. I. Degradation and cell migration.
    Kim S; Chung EH; Gilbert M; Healy KE
    J Biomed Mater Res A; 2005 Oct; 75(1):73-88. PubMed ID: 16049978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.