These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 2015883)
1. Interaction of mitochondrial creatine kinase with model membranes. A monolayer study. Rojo M; Hovius R; Demel R; Wallimann T; Eppenberger HM; Nicolay K FEBS Lett; 1991 Apr; 281(1-2):123-9. PubMed ID: 2015883 [TBL] [Abstract][Full Text] [Related]
2. Functional studies with the octameric and dimeric form of mitochondrial creatine kinase. Differential pH-dependent association of the two oligomeric forms with the inner mitochondrial membrane. Schlegel J; Wyss M; Eppenberger HM; Wallimann T J Biol Chem; 1990 Jun; 265(16):9221-7. PubMed ID: 2345172 [TBL] [Abstract][Full Text] [Related]
3. Native mitochondrial creatine kinase forms octameric structures. I. Isolation of two interconvertible mitochondrial creatine kinase forms, dimeric and octameric mitochondrial creatine kinase: characterization, localization, and structure-function relationships. Schlegel J; Zurbriggen B; Wegmann G; Wyss M; Eppenberger HM; Wallimann T J Biol Chem; 1988 Nov; 263(32):16942-53. PubMed ID: 3182823 [TBL] [Abstract][Full Text] [Related]
4. Mitochondrial creatine kinase isoform expression does not correlate with its mode of action. Anflous K; Veksler V; Mateo P; Samson F; Saks V; Ventura-Clapier R Biochem J; 1997 Feb; 322 ( Pt 1)(Pt 1):73-8. PubMed ID: 9078245 [TBL] [Abstract][Full Text] [Related]
6. Membrane-binding and lipid vesicle cross-linking kinetics of the mitochondrial creatine kinase octamer. Stachowiak O; Dolder M; Wallimann T Biochemistry; 1996 Dec; 35(48):15522-8. PubMed ID: 8952506 [TBL] [Abstract][Full Text] [Related]
7. The structure of mitochondrial creatine kinase and its membrane binding properties. Schnyder T; Rojo M; Furter R; Wallimann T Mol Cell Biochem; 1994; 133-134():115-23. PubMed ID: 7808449 [TBL] [Abstract][Full Text] [Related]
8. Mitochondrial creatine kinase from human heart muscle: purification and characterization of the crystallized isoenzyme. Blum HE; Deus B; Gerok W J Biochem; 1983 Oct; 94(4):1247-57. PubMed ID: 6418727 [TBL] [Abstract][Full Text] [Related]
9. Human creatine kinase. Isoenzymes and logistics of energy distribution. Sylvén C; Jansson E; Kallner A; Böök K Scand J Clin Lab Invest; 1984 Nov; 44(7):611-5. PubMed ID: 6531648 [TBL] [Abstract][Full Text] [Related]
15. Native mitochondrial creatine kinase forms octameric structures. II. Characterization of dimers and octamers by ultracentrifugation, direct mass measurements by scanning transmission electron microscopy, and image analysis of single mitochondrial creatine kinase octamers. Schnyder T; Engel A; Lustig A; Wallimann T J Biol Chem; 1988 Nov; 263(32):16954-62. PubMed ID: 3182824 [TBL] [Abstract][Full Text] [Related]
16. [Specificity of interaction of hexokinase isozyme II with mitochondrial membranes]. Muntian EM; Goncharova NIu Biokhimiia; 1986 Mar; 51(3):404-12. PubMed ID: 3697416 [TBL] [Abstract][Full Text] [Related]
17. Heterogeneity of mitochondrial creatine kinase. Kanemitsu F; Kageoka T; Kira S J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Jul; 806(2):95-100. PubMed ID: 15171917 [TBL] [Abstract][Full Text] [Related]
18. Mitochondrial creatine kinase is a prime target of peroxynitrite-induced modification and inactivation. Stachowiak O; Dolder M; Wallimann T; Richter C J Biol Chem; 1998 Jul; 273(27):16694-9. PubMed ID: 9642223 [TBL] [Abstract][Full Text] [Related]
19. Structure of the mitochondrial creatine kinase octamer: high-resolution shadowing and image averaging of single molecules and formation of linear filaments under specific staining conditions. Schnyder T; Gross H; Winkler H; Eppenberger HM; Wallimann T J Cell Biol; 1991 Jan; 112(1):95-101. PubMed ID: 1702444 [TBL] [Abstract][Full Text] [Related]