These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 20158875)
1. Projection of gene-protein networks to the functional space of the proteome and its application to analysis of organism complexity. Kanapin AA; Mulder N; Kuznetsov VA BMC Genomics; 2010 Feb; 11 Suppl 1(Suppl 1):S4. PubMed ID: 20158875 [TBL] [Abstract][Full Text] [Related]
2. The relationship between proteome size, structural disorder and organism complexity. Schad E; Tompa P; Hegyi H Genome Biol; 2011 Dec; 12(12):R120. PubMed ID: 22182830 [TBL] [Abstract][Full Text] [Related]
3. A new advance in alternative splicing databases: from catalogue to detailed analysis of regulation of expression and function of human alternative splicing variants. de la Grange P; Dutertre M; Correa M; Auboeuf D BMC Bioinformatics; 2007 Jun; 8():180. PubMed ID: 17547750 [TBL] [Abstract][Full Text] [Related]
4. Evolutionary hallmarks of the human proteome: chasing the age and coregulation of protein-coding genes. Lopes KP; Campos-Laborie FJ; Vialle RA; Ortega JM; De Las Rivas J BMC Genomics; 2016 Oct; 17(Suppl 8):725. PubMed ID: 27801289 [TBL] [Abstract][Full Text] [Related]
5. Protein-based analysis of alternative splicing in the human genome. Loraine AE; Helt GA; Cline MS; Siani-Rose MA Proc IEEE Comput Soc Bioinform Conf; 2002; 1():118-24. PubMed ID: 15838129 [TBL] [Abstract][Full Text] [Related]
6. Correcting for differential transcript coverage reveals a strong relationship between alternative splicing and organism complexity. Chen L; Bush SJ; Tovar-Corona JM; Castillo-Morales A; Urrutia AO Mol Biol Evol; 2014 Jun; 31(6):1402-13. PubMed ID: 24682283 [TBL] [Abstract][Full Text] [Related]
7. Impacts of protein-protein interaction domains on organism and network complexity. Xia K; Fu Z; Hou L; Han JD Genome Res; 2008 Sep; 18(9):1500-8. PubMed ID: 18687879 [TBL] [Abstract][Full Text] [Related]
8. Alternative Splicing May Not Be the Key to Proteome Complexity. Tress ML; Abascal F; Valencia A Trends Biochem Sci; 2017 Feb; 42(2):98-110. PubMed ID: 27712956 [TBL] [Abstract][Full Text] [Related]
9. Integrating many co-splicing networks to reconstruct splicing regulatory modules. Dai C; Li W; Liu J; Zhou XJ BMC Syst Biol; 2012; 6 Suppl 1(Suppl 1):S17. PubMed ID: 23046974 [TBL] [Abstract][Full Text] [Related]
10. Characteristics and regulatory elements defining constitutive splicing and different modes of alternative splicing in human and mouse. Zheng CL; Fu XD; Gribskov M RNA; 2005 Dec; 11(12):1777-87. PubMed ID: 16251388 [TBL] [Abstract][Full Text] [Related]
11. Different levels of alternative splicing among eukaryotes. Kim E; Magen A; Ast G Nucleic Acids Res; 2007; 35(1):125-31. PubMed ID: 17158149 [TBL] [Abstract][Full Text] [Related]
12. A transcript perspective on evolution. Christinat Y; Moret BM IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(6):1403-11. PubMed ID: 24407299 [TBL] [Abstract][Full Text] [Related]
13. Detection of alternative splice variants at the proteome level in Aspergillus flavus. Chang KY; Georgianna DR; Heber S; Payne GA; Muddiman DC J Proteome Res; 2010 Mar; 9(3):1209-17. PubMed ID: 20047314 [TBL] [Abstract][Full Text] [Related]
14. An atlas of alternative splicing profiles and functional associations reveals new regulatory programs and genes that simultaneously express multiple major isoforms. Tapial J; Ha KCH; Sterne-Weiler T; Gohr A; Braunschweig U; Hermoso-Pulido A; Quesnel-Vallières M; Permanyer J; Sodaei R; Marquez Y; Cozzuto L; Wang X; Gómez-Velázquez M; Rayon T; Manzanares M; Ponomarenko J; Blencowe BJ; Irimia M Genome Res; 2017 Oct; 27(10):1759-1768. PubMed ID: 28855263 [TBL] [Abstract][Full Text] [Related]
15. Alternative splicing and protein structure evolution. Birzele F; Csaba G; Zimmer R Nucleic Acids Res; 2008 Feb; 36(2):550-8. PubMed ID: 18055499 [TBL] [Abstract][Full Text] [Related]
16. Systematic analysis of human kinase genes: a large number of genes and alternative splicing events result in functional and structural diversity. Milanesi L; Petrillo M; Sepe L; Boccia A; D'Agostino N; Passamano M; Di Nardo S; Tasco G; Casadio R; Paolella G BMC Bioinformatics; 2005 Dec; 6 Suppl 4(Suppl 4):S20. PubMed ID: 16351747 [TBL] [Abstract][Full Text] [Related]
17. Alternative splicing: increasing diversity in the proteomic world. Graveley BR Trends Genet; 2001 Feb; 17(2):100-7. PubMed ID: 11173120 [TBL] [Abstract][Full Text] [Related]
18. A High-Resolution Genome-Wide CRISPR/Cas9 Viability Screen Reveals Structural Features and Contextual Diversity of the Human Cell-Essential Proteome. Bertomeu T; Coulombe-Huntington J; Chatr-Aryamontri A; Bourdages KG; Coyaud E; Raught B; Xia Y; Tyers M Mol Cell Biol; 2018 Jan; 38(1):. PubMed ID: 29038160 [TBL] [Abstract][Full Text] [Related]
19. Efficient prediction of alternative splice forms using protein domain homology. Hiller M; Backofen R; Heymann S; Busch A; Glaesser TM; Freytag JC In Silico Biol; 2004; 4(2):195-208. PubMed ID: 15107023 [TBL] [Abstract][Full Text] [Related]
20. Integrating alternative splicing detection into gene prediction. Foissac S; Schiex T BMC Bioinformatics; 2005 Feb; 6():25. PubMed ID: 15705189 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]