These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 20158875)
21. Global transcriptome analysis reveals extensive gene remodeling, alternative splicing and differential transcription profiles in non-seed vascular plant Selaginella moellendorffii. Zhu Y; Chen L; Zhang C; Hao P; Jing X; Li X BMC Genomics; 2017 Jan; 18(Suppl 1):1042. PubMed ID: 28198676 [TBL] [Abstract][Full Text] [Related]
22. Complex Analysis of Retroposed Genes' Contribution to Human Genome, Proteome and Transcriptome. Kubiak MR; Szcześniak MW; Makałowska I Genes (Basel); 2020 May; 11(5):. PubMed ID: 32408516 [TBL] [Abstract][Full Text] [Related]
23. Distinct types of disorder in the human proteome: functional implications for alternative splicing. Colak R; Kim T; Michaut M; Sun M; Irimia M; Bellay J; Myers CL; Blencowe BJ; Kim PM PLoS Comput Biol; 2013 Apr; 9(4):e1003030. PubMed ID: 23633940 [TBL] [Abstract][Full Text] [Related]
24. Relating alternative splicing to proteome complexity and genome evolution. Xing Y; Lee C Adv Exp Med Biol; 2007; 623():36-49. PubMed ID: 18380339 [TBL] [Abstract][Full Text] [Related]
25. Functional Networks of Highest-Connected Splice Isoforms: From The Chromosome 17 Human Proteome Project. Li HD; Menon R; Govindarajoo B; Panwar B; Zhang Y; Omenn GS; Guan Y J Proteome Res; 2015 Sep; 14(9):3484-91. PubMed ID: 26216192 [TBL] [Abstract][Full Text] [Related]
26. Genome-wide detection and analysis of alternative splicing for nucleotide binding site-leucine-rich repeats sequences in rice. Gu L; Guo R J Genet Genomics; 2007 Mar; 34(3):247-57. PubMed ID: 17498622 [TBL] [Abstract][Full Text] [Related]
27. Alternative splicing modulated by genetic variants demonstrates accelerated evolution regulated by highly conserved proteins. Hsiao YH; Bahn JH; Lin X; Chan TM; Wang R; Xiao X Genome Res; 2016 Apr; 26(4):440-50. PubMed ID: 26888265 [TBL] [Abstract][Full Text] [Related]
28. DIGGER: exploring the functional role of alternative splicing in protein interactions. Louadi Z; Yuan K; Gress A; Tsoy O; Kalinina OV; Baumbach J; Kacprowski T; List M Nucleic Acids Res; 2021 Jan; 49(D1):D309-D318. PubMed ID: 32976589 [TBL] [Abstract][Full Text] [Related]
29. Alternative pre-mRNA splicing and proteome expansion in metazoans. Maniatis T; Tasic B Nature; 2002 Jul; 418(6894):236-43. PubMed ID: 12110900 [TBL] [Abstract][Full Text] [Related]
30. The origins, evolution, and functional potential of alternative splicing in vertebrates. Mudge JM; Frankish A; Fernandez-Banet J; Alioto T; Derrien T; Howald C; Reymond A; Guigó R; Hubbard T; Harrow J Mol Biol Evol; 2011 Oct; 28(10):2949-59. PubMed ID: 21551269 [TBL] [Abstract][Full Text] [Related]
31. The impact of splicing on protein domain architecture. Light S; Elofsson A Curr Opin Struct Biol; 2013 Jun; 23(3):451-8. PubMed ID: 23562110 [TBL] [Abstract][Full Text] [Related]
32. Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level. Abascal F; Ezkurdia I; Rodriguez-Rivas J; Rodriguez JM; del Pozo A; Vázquez J; Valencia A; Tress ML PLoS Comput Biol; 2015 Jun; 11(6):e1004325. PubMed ID: 26061177 [TBL] [Abstract][Full Text] [Related]
33. SUS-BAR: a database of pig proteins with statistically validated structural and functional annotation. Piovesan D; Profiti G; Martelli PL; Fariselli P; Fontanesi L; Casadio R Database (Oxford); 2013; 2013():bat065. PubMed ID: 24065691 [TBL] [Abstract][Full Text] [Related]
34. Accentuate the negative: proteome comparisons using the negative proteome database. Reiter LT; Do LH; Fischer MS; Hong NA; Bier E Fly (Austin); 2007; 1(3):164-71. PubMed ID: 18820470 [TBL] [Abstract][Full Text] [Related]
35. Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing. Yang X; Coulombe-Huntington J; Kang S; Sheynkman GM; Hao T; Richardson A; Sun S; Yang F; Shen YA; Murray RR; Spirohn K; Begg BE; Duran-Frigola M; MacWilliams A; Pevzner SJ; Zhong Q; Wanamaker SA; Tam S; Ghamsari L; Sahni N; Yi S; Rodriguez MD; Balcha D; Tan G; Costanzo M; Andrews B; Boone C; Zhou XJ; Salehi-Ashtiani K; Charloteaux B; Chen AA; Calderwood MA; Aloy P; Roth FP; Hill DE; Iakoucheva LM; Xia Y; Vidal M Cell; 2016 Feb; 164(4):805-17. PubMed ID: 26871637 [TBL] [Abstract][Full Text] [Related]
36. Alternative splicing of mouse transcription factors affects their DNA-binding domain architecture and is tissue specific. Taneri B; Snyder B; Novoradovsky A; Gaasterland T Genome Biol; 2004; 5(10):R75. PubMed ID: 15461794 [TBL] [Abstract][Full Text] [Related]
37. Tracing the origin of functional and conserved domains in the human proteome: implications for protein evolution at the modular level. Pal LR; Guda C BMC Evol Biol; 2006 Nov; 6():91. PubMed ID: 17090320 [TBL] [Abstract][Full Text] [Related]
38. Studying alternative splicing regulatory networks through partial correlation analysis. Chen L; Zheng S Genome Biol; 2009; 10(1):R3. PubMed ID: 19133160 [TBL] [Abstract][Full Text] [Related]
39. Unveiling alterative splice diversity from human oligodendrocyte proteome data. Tavares R; Wajnberg G; Scherer NM; Pauletti BA; Cassoli JS; Ferreira CG; Paes Leme AF; de Araujo-Souza PS; Martins-de-Souza D; Passetti F J Proteomics; 2017 Jan; 151():293-301. PubMed ID: 27222040 [TBL] [Abstract][Full Text] [Related]
40. Assessing the impact of alternative splicing on domain interactions in the human proteome. Resch A; Xing Y; Modrek B; Gorlick M; Riley R; Lee C J Proteome Res; 2004; 3(1):76-83. PubMed ID: 14998166 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]