These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 20159166)

  • 1. Distinguishing between protein dynamics and dye photophysics in single-molecule FRET experiments.
    Chung HS; Louis JM; Eaton WA
    Biophys J; 2010 Feb; 98(4):696-706. PubMed ID: 20159166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural heterogeneity and quantitative FRET efficiency distributions of polyprolines through a hybrid atomistic simulation and Monte Carlo approach.
    Hoefling M; Lima N; Haenni D; Seidel CA; Schuler B; Grubmüller H
    PLoS One; 2011; 6(5):e19791. PubMed ID: 21629703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracting rate coefficients from single-molecule photon trajectories and FRET efficiency histograms for a fast-folding protein.
    Chung HS; Gopich IV; McHale K; Cellmer T; Louis JM; Eaton WA
    J Phys Chem A; 2011 Apr; 115(16):3642-56. PubMed ID: 20509636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental determination of upper bound for transition path times in protein folding from single-molecule photon-by-photon trajectories.
    Chung HS; Louis JM; Eaton WA
    Proc Natl Acad Sci U S A; 2009 Jul; 106(29):11837-44. PubMed ID: 19584244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Color Single-Molecule FRET and Fluorescence Lifetime Analysis of Fast Protein Folding.
    Yoo J; Louis JM; Gopich IV; Chung HS
    J Phys Chem B; 2018 Dec; 122(49):11702-11720. PubMed ID: 30230835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding the pattern of photon colors in single-molecule FRET.
    Gopich IV; Szabo A
    J Phys Chem B; 2009 Aug; 113(31):10965-73. PubMed ID: 19588948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of confocal single-molecule FRET to intrinsically disordered proteins.
    Schuler B; Müller-Späth S; Soranno A; Nettels D
    Methods Mol Biol; 2012; 896():21-45. PubMed ID: 22821515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data.
    Dietrich A; Buschmann V; Müller C; Sauer M
    J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of protein folding/unfolding dynamics of ubiquitin trapped in agarose gel by single-molecule FRET.
    Yang LL; Kao MW; Chen HL; Lim TS; Fann W; Chen RP
    Eur Biophys J; 2012 Feb; 41(2):189-98. PubMed ID: 22068826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the origin of broadening of single-molecule FRET efficiency distributions beyond shot noise limits.
    Kalinin S; Sisamakis E; Magennis SW; Felekyan S; Seidel CA
    J Phys Chem B; 2010 May; 114(18):6197-206. PubMed ID: 20397670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Fluorescence Lifetime and Energy Transfer Efficiency in Single-Molecule Photon Trajectories of Fast-Folding Proteins.
    Chung HS; Louis JM; Gopich IV
    J Phys Chem B; 2016 Feb; 120(4):680-99. PubMed ID: 26812046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orientational averaging of dye molecules attached to proteins in Förster resonance energy transfer measurements: insights from a simulation study.
    Allen LR; Paci E
    J Chem Phys; 2009 Aug; 131(6):065101. PubMed ID: 19691411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo Diffusion-Enhanced Photon Inference: Distance Distributions and Conformational Dynamics in Single-Molecule FRET.
    Ingargiola A; Weiss S; Lerner E
    J Phys Chem B; 2018 Dec; 122(49):11598-11615. PubMed ID: 30252475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate single-pair Förster resonant energy transfer through combination of pulsed interleaved excitation, time correlated single-photon counting, and fluorescence correlation spectroscopy.
    Rüttinger S; Macdonald R; Krämer B; Koberling F; Roos M; Hildt E
    J Biomed Opt; 2006; 11(2):024012. PubMed ID: 16674202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxazine dye-conjugated dna oligonucleotides: Förster resonance energy transfer in view of molecular dye-DNA interactions.
    Kupstat A; Ritschel T; Kumke MU
    Bioconjug Chem; 2011 Dec; 22(12):2546-57. PubMed ID: 22073970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural changes of yellow Cameleon domains observed by quantitative FRET analysis and polarized fluorescence correlation spectroscopy.
    Borst JW; Laptenok SP; Westphal AH; Kühnemuth R; Hornen H; Visser NV; Kalinin S; Aker J; van Hoek A; Seidel CA; Visser AJ
    Biophys J; 2008 Dec; 95(11):5399-411. PubMed ID: 18790855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intramolecular distances and dynamics from the combined photon statistics of single-molecule FRET and photoinduced electron transfer.
    Haenni D; Zosel F; Reymond L; Nettels D; Schuler B
    J Phys Chem B; 2013 Oct; 117(42):13015-28. PubMed ID: 23718771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photophysics of backbone fluorescent DNA modifications: reducing uncertainties in FRET.
    Ranjit S; Gurunathan K; Levitus M
    J Phys Chem B; 2009 Jun; 113(22):7861-6. PubMed ID: 19473039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-molecule FRET with diffusion and conformational dynamics.
    Gopich IV; Szabo A
    J Phys Chem B; 2007 Nov; 111(44):12925-32. PubMed ID: 17929964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.