BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 20159855)

  • 1. Contraction-related stimuli regulate GLUT4 traffic in C2C12-GLUT4myc skeletal muscle cells.
    Niu W; Bilan PJ; Ishikura S; Schertzer JD; Contreras-Ferrat A; Fu Z; Liu J; Boguslavsky S; Foley KP; Liu Z; Li J; Chu G; Panakkezhum T; Lopaschuk GD; Lavandero S; Yao Z; Klip A
    Am J Physiol Endocrinol Metab; 2010 May; 298(5):E1058-71. PubMed ID: 20159855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle cell depolarization induces a gain in surface GLUT4 via reduced endocytosis independently of AMPK.
    Wijesekara N; Tung A; Thong F; Klip A
    Am J Physiol Endocrinol Metab; 2006 Jun; 290(6):E1276-86. PubMed ID: 16418206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PKCε regulates contraction-stimulated GLUT4 traffic in skeletal muscle cells.
    Niu W; Bilan PJ; Yu J; Gao J; Boguslavsky S; Schertzer JD; Chu G; Yao Z; Klip A
    J Cell Physiol; 2011 Jan; 226(1):173-80. PubMed ID: 20658540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The M3-muscarinic acetylcholine receptor stimulates glucose uptake in L6 skeletal muscle cells by a CaMKK-AMPK-dependent mechanism.
    Merlin J; Evans BA; Csikasz RI; Bengtsson T; Summers RJ; Hutchinson DS
    Cell Signal; 2010 Jul; 22(7):1104-13. PubMed ID: 20206685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of glucose transporters by insulin and extracellular glucose in C2C12 myotubes.
    Nedachi T; Kanzaki M
    Am J Physiol Endocrinol Metab; 2006 Oct; 291(4):E817-28. PubMed ID: 16735448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Rab GTPase-activating protein AS160 integrates Akt, protein kinase C, and AMP-activated protein kinase signals regulating GLUT4 traffic.
    Thong FS; Bilan PJ; Klip A
    Diabetes; 2007 Feb; 56(2):414-23. PubMed ID: 17259386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liraglutide enhances glucose transporter 4 translocation via regulation of AMP-activated protein kinase signaling pathways in mouse skeletal muscle cells.
    Li Z; Ni CL; Yao Z; Chen LM; Niu WY
    Metabolism; 2014 Aug; 63(8):1022-30. PubMed ID: 24972503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of glucose transporter 4 traffic by energy deprivation from mitochondrial compromise.
    Klip A; Schertzer JD; Bilan PJ; Thong F; Antonescu C
    Acta Physiol (Oxf); 2009 May; 196(1):27-35. PubMed ID: 19245652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca²⁺ signals promote GLUT4 exocytosis and reduce its endocytosis in muscle cells.
    Li Q; Zhu X; Ishikura S; Zhang D; Gao J; Sun Y; Contreras-Ferrat A; Foley KP; Lavandero S; Yao Z; Bilan PJ; Klip A; Niu W
    Am J Physiol Endocrinol Metab; 2014 Jul; 307(2):E209-24. PubMed ID: 24895284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction.
    Jensen TE; Rose AJ; Jørgensen SB; Brandt N; Schjerling P; Wojtaszewski JF; Richter EA
    Am J Physiol Endocrinol Metab; 2007 May; 292(5):E1308-17. PubMed ID: 17213473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clozapine activates AMP-activated protein kinase (AMPK) in C2C12 myotube cells and stimulates glucose uptake.
    Kim JH; Lee JO; Lee SK; Jung JH; You GY; Park SH; Park M; Kim SD; Kim HS
    Life Sci; 2010 Jul; 87(1-2):42-8. PubMed ID: 20515698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxytocin stimulates glucose uptake in skeletal muscle cells through the calcium-CaMKK-AMPK pathway.
    Lee ES; Uhm KO; Lee YM; Kwon J; Park SH; Soo KH
    Regul Pept; 2008 Nov; 151(1-3):71-4. PubMed ID: 18555543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide increases GLUT4 expression and regulates AMPK signaling in skeletal muscle.
    Lira VA; Soltow QA; Long JH; Betters JL; Sellman JE; Criswell DS
    Am J Physiol Endocrinol Metab; 2007 Oct; 293(4):E1062-8. PubMed ID: 17666490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of contraction-inducible CXC chemokines and their roles in C2C12 myocytes.
    Nedachi T; Hatakeyama H; Kono T; Sato M; Kanzaki M
    Am J Physiol Endocrinol Metab; 2009 Oct; 297(4):E866-78. PubMed ID: 19622786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activators of AMP-activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3-L1 adipocytes.
    Yamaguchi S; Katahira H; Ozawa S; Nakamichi Y; Tanaka T; Shimoyama T; Takahashi K; Yoshimoto K; Imaizumi MO; Nagamatsu S; Ishida H
    Am J Physiol Endocrinol Metab; 2005 Oct; 289(4):E643-9. PubMed ID: 15928020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the nitric oxide pathway in AMPK-mediated glucose uptake and GLUT4 translocation in heart muscle.
    Li J; Hu X; Selvakumar P; Russell RR; Cushman SW; Holman GD; Young LH
    Am J Physiol Endocrinol Metab; 2004 Nov; 287(5):E834-41. PubMed ID: 15265762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of glycolysis and expression of glucose metabolism-related genes by reactive oxygen species in contracting skeletal muscle cells.
    Pinheiro CH; Silveira LR; Nachbar RT; Vitzel KF; Curi R
    Free Radic Biol Med; 2010 Apr; 48(7):953-60. PubMed ID: 20080177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle.
    Kramer HF; Witczak CA; Fujii N; Jessen N; Taylor EB; Arnolds DE; Sakamoto K; Hirshman MF; Goodyear LJ
    Diabetes; 2006 Jul; 55(7):2067-76. PubMed ID: 16804077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical pulse stimulation induces GLUT4 translocation in C
    Li Z; Yue Y; Hu F; Zhang C; Ma X; Li N; Qiu L; Fu M; Chen L; Yao Z; Bilan PJ; Klip A; Niu W
    Am J Physiol Endocrinol Metab; 2018 May; 314(5):E478-E493. PubMed ID: 29089333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative stress induces GLUT4 translocation by activation of PI3-K/Akt and dual AMPK kinase in cardiac myocytes.
    Horie T; Ono K; Nagao K; Nishi H; Kinoshita M; Kawamura T; Wada H; Shimatsu A; Kita T; Hasegawa K
    J Cell Physiol; 2008 Jun; 215(3):733-42. PubMed ID: 18163380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.