These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 20159856)
1. Abnormal in vivo myocardial energy substrate uptake in diet-induced type 2 diabetic cardiomyopathy in rats. Ménard SL; Croteau E; Sarrhini O; Gélinas R; Brassard P; Ouellet R; Bentourkia M; van Lier JE; Des Rosiers C; Lecomte R; Carpentier AC Am J Physiol Endocrinol Metab; 2010 May; 298(5):E1049-57. PubMed ID: 20159856 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of reduced myocardial glucose utilization during acute hypertriglyceridemia in rats. Ménard SL; Ci X; Frisch F; Normand-Lauzière F; Cadorette J; Ouellet R; Van Lier JE; Bénard F; Bentourkia M; Lecomte R; Carpentier AC Mol Imaging Biol; 2009; 11(1):6-14. PubMed ID: 18769973 [TBL] [Abstract][Full Text] [Related]
3. An evaluation of myocardial fatty acid and glucose uptake using PET with [18F]fluoro-6-thia-heptadecanoic acid and [18F]FDG in Patients with Congestive Heart Failure. Taylor M; Wallhaus TR; Degrado TR; Russell DC; Stanko P; Nickles RJ; Stone CK J Nucl Med; 2001 Jan; 42(1):55-62. PubMed ID: 11197981 [TBL] [Abstract][Full Text] [Related]
4. Changes in FAT/CD36, UCP2, UCP3 and GLUT4 gene expression during lipid infusion in rat skeletal and heart muscle. Vettor R; Fabris R; Serra R; Lombardi AM; Tonello C; Granzotto M; Marzolo MO; Carruba MO; Ricquier D; Federspil G; Nisoli E Int J Obes Relat Metab Disord; 2002 Jun; 26(6):838-47. PubMed ID: 12037655 [TBL] [Abstract][Full Text] [Related]
5. Longitudinal evaluation of left ventricular substrate metabolism, perfusion, and dysfunction in the spontaneously hypertensive rat model of hypertrophy using small-animal PET/CT imaging. Hernandez AM; Huber JS; Murphy ST; Janabi M; Zeng GL; Brennan KM; O'Neil JP; Seo Y; Gullberg GT J Nucl Med; 2013 Nov; 54(11):1938-45. PubMed ID: 24092939 [TBL] [Abstract][Full Text] [Related]
6. The heart is better protected against myocardial infarction in the fed state compared to the fasted state. Liepinsh E; Makrecka M; Kuka J; Makarova E; Vilskersts R; Cirule H; Sevostjanovs E; Grinberga S; Pugovics O; Dambrova M Metabolism; 2014 Jan; 63(1):127-36. PubMed ID: 24140100 [TBL] [Abstract][Full Text] [Related]
7. Myocardial glucose utilization and optimization of (18)F-FDG PET imaging in patients with non-insulin-dependent diabetes mellitus, coronary artery disease, and left ventricular dysfunction. Vitale GD; deKemp RA; Ruddy TD; Williams K; Beanlands RS J Nucl Med; 2001 Dec; 42(12):1730-6. PubMed ID: 11752067 [TBL] [Abstract][Full Text] [Related]
8. Assessment of myocardial metabolism in diabetic rats using small-animal PET: a feasibility study. Welch MJ; Lewis JS; Kim J; Sharp TL; Dence CS; Gropler RJ; Herrero P J Nucl Med; 2006 Apr; 47(4):689-97. PubMed ID: 16595504 [TBL] [Abstract][Full Text] [Related]
9. Longitudinal Evaluation of Myocardial Fatty Acid and Glucose Metabolism in Fasted and Nonfasted Spontaneously Hypertensive Rats Using MicroPET/CT. Huber JS; Hernandez AM; Janabi M; O'Neil JP; Brennan KM; Murphy ST; Seo Y; Gullberg GT Mol Imaging; 2017; 16():1536012117724558. PubMed ID: 28877656 [TBL] [Abstract][Full Text] [Related]
10. Myocardial substrate utilization and left ventricular function in adriamycin cardiomyopathy. Wakasugi S; Fischman AJ; Babich JW; Callahan RJ; Elmaleh DR; Wilkinson R; Strauss HW J Nucl Med; 1993 Sep; 34(9):1529-35. PubMed ID: 8355075 [TBL] [Abstract][Full Text] [Related]
11. Glucose and fatty acid metabolism in infarcted heart from streptozotocin-induced diabetic rats after 2 weeks of tissue remodeling. Malfitano C; de Souza Junior AL; Carbonaro M; Bolsoni-Lopes A; Figueroa D; de Souza LE; Silva KA; Consolim-Colombo F; Curi R; Irigoyen MC Cardiovasc Diabetol; 2015 Nov; 14():149. PubMed ID: 26553117 [TBL] [Abstract][Full Text] [Related]
12. [Activation of transforming growth factor-beta1/Smads signal pathway in diabetic cardiomyopathy and effects of valsartan thereon: experiment with rats]. Miao Y; Zhang W; Zhong M; Ma X; Qi TG; Sun H Zhonghua Yi Xue Za Zhi; 2007 Feb; 87(6):366-70. PubMed ID: 17456374 [TBL] [Abstract][Full Text] [Related]
13. Altered myocardial substrate metabolism is associated with myocardial dysfunction in early diabetic cardiomyopathy in rats: studies using positron emission tomography. van den Brom CE; Huisman MC; Vlasblom R; Boontje NM; Duijst S; Lubberink M; Molthoff CF; Lammertsma AA; van der Velden J; Boer C; Ouwens DM; Diamant M Cardiovasc Diabetol; 2009 Jul; 8():39. PubMed ID: 19624828 [TBL] [Abstract][Full Text] [Related]
14. Abnormal myocardial kinetics of 123I-heptadecanoic acid in subjects with impaired glucose tolerance. Turpeinen AK; Kuikka JT; Vanninen E; Uusitupa MI Diabetologia; 1997 May; 40(5):541-9. PubMed ID: 9165222 [TBL] [Abstract][Full Text] [Related]
15. [Change of glucose transporter 4 and its influence on glucose and fatty-acid metabolism in type 2 diabetic myocardium]. Wen ZY; Wu Y; Li Y; Chen XL; Wang T; Ouyang JP; Li GS Zhonghua Yi Xue Za Zhi; 2005 Jun; 85(21):1460-3. PubMed ID: 16061022 [TBL] [Abstract][Full Text] [Related]
16. Assessment of myocardial metabolic flexibility and work efficiency in human type 2 diabetes using 16-[18F]fluoro-4-thiapalmitate, a novel PET fatty acid tracer. Mather KJ; Hutchins GD; Perry K; Territo W; Chisholm R; Acton A; Glick-Wilson B; Considine RV; Moberly S; DeGrado TR Am J Physiol Endocrinol Metab; 2016 Mar; 310(6):E452-60. PubMed ID: 26732686 [TBL] [Abstract][Full Text] [Related]
17. Fatty acids and insulin modulate myocardial substrate metabolism in humans with type 1 diabetes. Peterson LR; Herrero P; McGill J; Schechtman KB; Kisrieva-Ware Z; Lesniak D; Gropler RJ Diabetes; 2008 Jan; 57(1):32-40. PubMed ID: 17914030 [TBL] [Abstract][Full Text] [Related]