These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 20159884)

  • 41. Organizational Innovation of Apical Actin Filaments Drives Rapid Pollen Tube Growth and Turning.
    Qu X; Zhang R; Zhang M; Diao M; Xue Y; Huang S
    Mol Plant; 2017 Jul; 10(7):930-947. PubMed ID: 28502709
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Signaling to actin stochastic dynamics.
    Li J; Blanchoin L; Staiger CJ
    Annu Rev Plant Biol; 2015; 66():415-40. PubMed ID: 25423079
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Actin cytoskeleton in the control of vesicle transport, cytoplasmic organization, and pollen tube tip growth.
    Zhang R; Xu Y; Yi R; Shen J; Huang S
    Plant Physiol; 2023 Aug; 193(1):9-25. PubMed ID: 37002825
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Villin controls the formation and enlargement of punctate actin foci in pollen tubes.
    Zhao W; Qu X; Zhuang Y; Wang L; Bosch M; Franklin-Tong VE; Xue Y; Huang S
    J Cell Sci; 2020 Mar; 133(6):. PubMed ID: 32051284
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Proteins implicated in mediating self-incompatibility-induced alterations to the actin cytoskeleton of Papaver pollen.
    Poulter NS; Bosch M; Franklin-Tong VE
    Ann Bot; 2011 Sep; 108(4):659-75. PubMed ID: 21320881
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Arabidopsis VILLIN4 is involved in root hair growth through regulating actin organization in a Ca2+-dependent manner.
    Zhang Y; Xiao Y; Du F; Cao L; Dong H; Ren H
    New Phytol; 2011 May; 190(3):667-82. PubMed ID: 21275995
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The function of actin-binding proteins in pollen tube growth.
    Ren H; Xiang Y
    Protoplasma; 2007; 230(3-4):171-82. PubMed ID: 17458632
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Actin filament dynamics are dominated by rapid growth and severing activity in the Arabidopsis cortical array.
    Staiger CJ; Sheahan MB; Khurana P; Wang X; McCurdy DW; Blanchoin L
    J Cell Biol; 2009 Jan; 184(2):269-80. PubMed ID: 19171759
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Actin-binding proteins implicated in the formation of the punctate actin foci stimulated by the self-incompatibility response in Papaver.
    Poulter NS; Staiger CJ; Rappoport JZ; Franklin-Tong VE
    Plant Physiol; 2010 Mar; 152(3):1274-83. PubMed ID: 20081043
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The role of cyclase-associated protein in regulating actin filament dynamics - more than a monomer-sequestration factor.
    Ono S
    J Cell Sci; 2013 Aug; 126(Pt 15):3249-58. PubMed ID: 23908377
    [TBL] [Abstract][Full Text] [Related]  

  • 51. ABP41 is involved in the pollen tube development via fragmenting actin filaments.
    Wang T; Xiang Y; Hou J; Ren HY
    Mol Plant; 2008 Nov; 1(6):1048-55. PubMed ID: 19825602
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Actin dynamics in the cortical array of plant cells.
    Henty-Ridilla JL; Li J; Blanchoin L; Staiger CJ
    Curr Opin Plant Biol; 2013 Dec; 16(6):678-87. PubMed ID: 24246228
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Apple S-RNase interacts with an actin-binding protein, MdMVG, to reduce pollen tube growth by inhibiting its actin-severing activity at the early stage of self-pollination induction.
    Yang Q; Meng D; Gu Z; Li W; Chen Q; Li Y; Yuan H; Yu J; Liu C; Li T
    Plant J; 2018 Jul; 95(1):41-56. PubMed ID: 29667261
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Actin and pollen tube growth.
    Vidali L; Hepler PK
    Protoplasma; 2001; 215(1-4):64-76. PubMed ID: 11732066
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A potential signaling role for profilin in pollen of Papaver rhoeas.
    Clarke SR; Staiger CJ; Gibbon BC; Franklin-Tong VE
    Plant Cell; 1998 Jun; 10(6):967-79. PubMed ID: 9634585
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regulation of the pollen-specific actin-depolymerizing factor LlADF1.
    Allwood EG; Anthony RG; Smertenko AP; Reichelt S; Drobak BK; Doonan JH; Weeds AG; Hussey PJ
    Plant Cell; 2002 Nov; 14(11):2915-27. PubMed ID: 12417710
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Turnover versus treadmilling in actin network assembly and remodeling.
    Ni Q; Papoian GA
    Cytoskeleton (Hoboken); 2019 Nov; 76(11-12):562-570. PubMed ID: 31525282
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Organelle trafficking, the cytoskeleton, and pollen tube growth.
    Cai G; Parrotta L; Cresti M
    J Integr Plant Biol; 2015 Jan; 57(1):63-78. PubMed ID: 25263392
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Plant villins: versatile actin regulatory proteins.
    Huang S; Qu X; Zhang R
    J Integr Plant Biol; 2015 Jan; 57(1):40-9. PubMed ID: 25294278
    [TBL] [Abstract][Full Text] [Related]  

  • 60. AtFim1 is an actin filament crosslinking protein from Arabidopsis thaliana.
    Kovar DR; Staiger CJ; Weaver EA; McCurdy DW
    Plant J; 2000 Dec; 24(5):625-36. PubMed ID: 11123801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.