These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

533 related articles for article (PubMed ID: 20159983)

  • 1. Structural diversity of triplet repeat RNAs.
    Sobczak K; Michlewski G; de Mezer M; Kierzek E; Krol J; Olejniczak M; Kierzek R; Krzyzosiak WJ
    J Biol Chem; 2010 Apr; 285(17):12755-64. PubMed ID: 20159983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinctive structural motifs of RNA G-quadruplexes composed of AGG, CGG and UGG trinucleotide repeats.
    Malgowska M; Gudanis D; Kierzek R; Wyszko E; Gabelica V; Gdaniec Z
    Nucleic Acids Res; 2014 Sep; 42(15):10196-207. PubMed ID: 25081212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA structure of trinucleotide repeats associated with human neurological diseases.
    Sobczak K; de Mezer M; Michlewski G; Krol J; Krzyzosiak WJ
    Nucleic Acids Res; 2003 Oct; 31(19):5469-82. PubMed ID: 14500809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Structural Potential of Rare Trinucleotide Repeat Tracts in RNA.
    Magner D; Nowak R; Lenartowicz Onyekaa E; Pasternak A; Kierzek R
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diagrammatic approaches to RNA structures with trinucleotide repeats.
    Mak CH; Phan ENH
    Biophys J; 2021 Jun; 120(11):2343-2354. PubMed ID: 33887227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of trinucleotide repeats in human transcripts and their functional implications.
    Jasinska A; Michlewski G; de Mezer M; Sobczak K; Kozlowski P; Napierala M; Krzyzosiak WJ
    Nucleic Acids Res; 2003 Oct; 31(19):5463-8. PubMed ID: 14500808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NGG-triplet repeats form similar intrastrand structures: implications for the triplet expansion diseases.
    Usdin K
    Nucleic Acids Res; 1998 Sep; 26(17):4078-85. PubMed ID: 9705522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic stability of RNA structures formed by CNG trinucleotide repeats. Implication for prediction of RNA structure.
    Broda M; Kierzek E; Gdaniec Z; Kulinski T; Kierzek R
    Biochemistry; 2005 Aug; 44(32):10873-82. PubMed ID: 16086590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trinucleotide repeats associated with human disease.
    Mitas M
    Nucleic Acids Res; 1997 Jun; 25(12):2245-54. PubMed ID: 9171073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression characteristics of triplet repeat-containing RNAs and triplet repeat-interacting proteins in human tissues.
    Jasinska AJ; Kozlowski P; Krzyzosiak WJ
    Acta Biochim Pol; 2008; 55(1):1-8. PubMed ID: 18231651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fragile X syndrome repeats form RNA hairpins that do not activate the interferon-inducible protein kinase, PKR, but are cut by Dicer.
    Handa V; Saha T; Usdin K
    Nucleic Acids Res; 2003 Nov; 31(21):6243-8. PubMed ID: 14576312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural dynamics of double-helical RNAs composed of CUG/CUG- and CUG/CGG-repeats.
    Tamjar J; Katorcha E; Popov A; Malinina L
    J Biomol Struct Dyn; 2012; 30(5):505-23. PubMed ID: 22731704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for the identification of an i-motif tetraplex core with a parallel-duplex junction as a structural motif in CCG triplet repeats.
    Chen YW; Jhan CR; Neidle S; Hou MH
    Angew Chem Int Ed Engl; 2014 Sep; 53(40):10682-6. PubMed ID: 25139267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of sequence context and length on the structure and stability of triplet repeat DNA oligomers.
    Paiva AM; Sheardy RD
    Biochemistry; 2004 Nov; 43(44):14218-27. PubMed ID: 15518572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures of CUG repeats in RNA. Potential implications for human genetic diseases.
    Pinheiro P; Scarlett G; Rodger A; Rodger PM; Murray A; Brown T; Newbury SF; McClellan JA
    J Biol Chem; 2002 Sep; 277(38):35183-90. PubMed ID: 12077125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning, characterization, and properties of seven triplet repeat DNA sequences.
    Ohshima K; Kang S; Larson JE; Wells RD
    J Biol Chem; 1996 Jul; 271(28):16773-83. PubMed ID: 8663377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational energetics of stable and metastable states formed by DNA triplet repeat oligonucleotides: implications for triplet expansion diseases.
    Völker J; Makube N; Plum GE; Klump HH; Breslauer KJ
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):14700-5. PubMed ID: 12417759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quadruplex-forming properties of FRAXA (CGG) repeats interrupted by (AGG) triplets.
    Renciuk D; Zemánek M; Kejnovská I; Vorlícková M
    Biochimie; 2009 Mar; 91(3):416-22. PubMed ID: 19028545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An intramolecular quadruplex of (GGA)(4) triplet repeat DNA with a G:G:G:G tetrad and a G(:A):G(:A):G(:A):G heptad, and its dimeric interaction.
    Matsugami A; Ouhashi K; Kanagawa M; Liu H; Kanagawa S; Uesugi S; Katahira M
    J Mol Biol; 2001 Oct; 313(2):255-69. PubMed ID: 11800555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms for maintenance of G-rich short tandem repeats capable of adopting G4 DNA structures.
    Nakagama H; Higuchi K; Tanaka E; Tsuchiya N; Nakashima K; Katahira M; Fukuda H
    Mutat Res; 2006 Jun; 598(1-2):120-31. PubMed ID: 16513142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.