These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 20160153)

  • 21. Mechanisms of skeletal muscle atrophy.
    Ventadour S; Attaix D
    Curr Opin Rheumatol; 2006 Nov; 18(6):631-5. PubMed ID: 17053511
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular and biological pathways of skeletal muscle dysfunction in chronic obstructive pulmonary disease.
    Barreiro E; Gea J
    Chron Respir Dis; 2016 Aug; 13(3):297-311. PubMed ID: 27056059
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Atrophy and hypertrophy signalling of the quadriceps and diaphragm in COPD.
    Doucet M; Dubé A; Joanisse DR; Debigaré R; Michaud A; Paré MÈ; Vaillancourt R; Fréchette E; Maltais F
    Thorax; 2010 Nov; 65(11):963-70. PubMed ID: 20965933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Skeletal muscle dysfunction in COPD].
    Gea J; Martínez-Llorens J; Ausín P
    Arch Bronconeumol; 2009; 45 Suppl 4():36-41. PubMed ID: 20116748
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aspiration pneumonia induces muscle atrophy in the respiratory, skeletal, and swallowing systems.
    Komatsu R; Okazaki T; Ebihara S; Kobayashi M; Tsukita Y; Nihei M; Sugiura H; Niu K; Ebihara T; Ichinose M
    J Cachexia Sarcopenia Muscle; 2018 Aug; 9(4):643-653. PubMed ID: 29790300
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cigarette smoke-induced oxidative stress: A role in chronic obstructive pulmonary disease skeletal muscle dysfunction.
    Barreiro E; Peinado VI; Galdiz JB; Ferrer E; Marin-Corral J; Sánchez F; Gea J; Barberà JA;
    Am J Respir Crit Care Med; 2010 Aug; 182(4):477-88. PubMed ID: 20413628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Preliminary proteomic analysis of peripheral skeletal muscle atrophy in chronic obstructive pulmonary disease].
    Guo W; Fu WP; Yang Y; Dai LM
    Zhonghua Yi Xue Za Zhi; 2012 Apr; 92(14):948-51. PubMed ID: 22781565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pathophysiology of muscle dysfunction in COPD.
    Gea J; Agustí A; Roca J
    J Appl Physiol (1985); 2013 May; 114(9):1222-34. PubMed ID: 23519228
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Muscle metabolism and exercise tolerance in COPD.
    Polkey MI
    Chest; 2002 May; 121(5 Suppl):131S-135S. PubMed ID: 12010841
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systemic inflammation and skeletal muscle dysfunction in chronic obstructive pulmonary disease: state of the art and novel insights in regulation of muscle plasticity.
    Remels AH; Gosker HR; van der Velden J; Langen RC; Schols AM
    Clin Chest Med; 2007 Sep; 28(3):537-52, vi. PubMed ID: 17720042
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Effects of tumor necrosis factor alpha on proteolysis of respiratory muscles in rats with chronic obstructive pulmonary disease].
    Sun SH; Tang WX; Liu C; Lin H; Yang HH
    Zhonghua Jie He He Hu Xi Za Zhi; 2007 Mar; 30(3):186-91. PubMed ID: 17572997
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxidative stress and respiratory muscle dysfunction in severe chronic obstructive pulmonary disease.
    Barreiro E; de la Puente B; Minguella J; Corominas JM; Serrano S; Hussain SN; Gea J
    Am J Respir Crit Care Med; 2005 May; 171(10):1116-24. PubMed ID: 15735057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pre-cachexia in patients with stages I-III non-small cell lung cancer: systemic inflammation and functional impairment without activation of skeletal muscle ubiquitin proteasome system.
    Op den Kamp CM; Langen RC; Minnaard R; Kelders MC; Snepvangers FJ; Hesselink MK; Dingemans AC; Schols AM
    Lung Cancer; 2012 Apr; 76(1):112-7. PubMed ID: 22018880
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pulmonary arterial hypertension-related myopathy: an overview of current data and future perspectives.
    Marra AM; Arcopinto M; Bossone E; Ehlken N; Cittadini A; Grünig E
    Nutr Metab Cardiovasc Dis; 2015 Feb; 25(2):131-9. PubMed ID: 25455722
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms of striated muscle dysfunction during acute exacerbations of COPD.
    Gayan-Ramirez G; Decramer M
    J Appl Physiol (1985); 2013 May; 114(9):1291-9. PubMed ID: 23372146
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exercise assessment and training in pulmonary rehabilitation for patients with COPD.
    Singh S; Harrison S; Houchen L; Wagg K
    Eur J Phys Rehabil Med; 2011 Sep; 47(3):483-97. PubMed ID: 21946406
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Clinical consequences of muscle dysfunction in chronic obstructive pulmonary disease].
    Sauleda Roig J
    Nutr Hosp; 2006 May; 21 Suppl 3():69-75. PubMed ID: 16768033
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Serum myostatin levels and skeletal muscle wasting in chronic obstructive pulmonary disease.
    Ju CR; Chen RC
    Respir Med; 2012 Jan; 106(1):102-8. PubMed ID: 21840694
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Skeletal muscle proteolysis in aging.
    Combaret L; Dardevet D; Béchet D; Taillandier D; Mosoni L; Attaix D
    Curr Opin Clin Nutr Metab Care; 2009 Jan; 12(1):37-41. PubMed ID: 19057185
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The major limitation to exercise performance in COPD is inadequate energy supply to the respiratory and locomotor muscles vs. lower limb muscle dysfunction vs. dynamic hyperinflation. The real cause of exercise limitation in COPD.
    Wagner PD
    J Appl Physiol (1985); 2008 Aug; 105(2):758. PubMed ID: 18678625
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.