BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 20160535)

  • 1. Oxidant-redox regulation of pulmonary vascular responses to hypoxia and nitric oxide-cGMP signaling.
    Wolin MS; Gupte SA; Neo BH; Gao Q; Ahmad M
    Cardiol Rev; 2010; 18(2):89-93. PubMed ID: 20160535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox regulation of responses to hypoxia and NO-cGMP signaling in pulmonary vascular pathophysiology.
    Wolin MS; Gupte SA; Mingone CJ; Neo BH; Gao Q; Ahmad M
    Ann N Y Acad Sci; 2010 Aug; 1203():126-32. PubMed ID: 20716294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive oxygen species and the control of vascular function.
    Wolin MS
    Am J Physiol Heart Circ Physiol; 2009 Mar; 296(3):H539-49. PubMed ID: 19151250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox Mechanisms Influencing cGMP Signaling in Pulmonary Vascular Physiology and Pathophysiology.
    Patel D; Lakhkar A; Wolin MS
    Adv Exp Med Biol; 2017; 967():227-240. PubMed ID: 29047089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exposure of mice to chronic hypoxia attenuates pulmonary arterial contractile responses to acute hypoxia by increases in extracellular hydrogen peroxide.
    Patel D; Alhawaj R; Wolin MS
    Am J Physiol Regul Integr Comp Physiol; 2014 Aug; 307(4):R426-33. PubMed ID: 24920729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidant and redox signaling in vascular oxygen sensing mechanisms: basic concepts, current controversies, and potential importance of cytosolic NADPH.
    Wolin MS; Ahmad M; Gupte SA
    Am J Physiol Lung Cell Mol Physiol; 2005 Aug; 289(2):L159-73. PubMed ID: 16002998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soluble guanylate cyclase-alpha1 deficiency selectively inhibits the pulmonary vasodilator response to nitric oxide and increases the pulmonary vascular remodeling response to chronic hypoxia.
    Vermeersch P; Buys E; Pokreisz P; Marsboom G; Ichinose F; Sips P; Pellens M; Gillijns H; Swinnen M; Graveline A; Collen D; Dewerchin M; Brouckaert P; Bloch KD; Janssens S
    Circulation; 2007 Aug; 116(8):936-43. PubMed ID: 17679618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles for cytosolic NADPH redox in regulating pulmonary artery relaxation by thiol oxidation-elicited subunit dimerization of protein kinase G1α.
    Neo BH; Patel D; Kandhi S; Wolin MS
    Am J Physiol Heart Circ Physiol; 2013 Aug; 305(3):H330-43. PubMed ID: 23709600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dehydroepiandrosterone promotes pulmonary artery relaxation by NADPH oxidation-elicited subunit dimerization of protein kinase G 1α.
    Patel D; Kandhi S; Kelly M; Neo BH; Wolin MS
    Am J Physiol Lung Cell Mol Physiol; 2014 Feb; 306(4):L383-91. PubMed ID: 24375799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism and Redox in Pulmonary Vascular Physiology and Pathophysiology.
    Alruwaili N; Kandhi S; Sun D; Wolin MS
    Antioxid Redox Signal; 2019 Oct; 31(10):752-769. PubMed ID: 30403147
    [No Abstract]   [Full Text] [Related]  

  • 11. Roles for NAD(P)H oxidases and reactive oxygen species in vascular oxygen sensing mechanisms.
    Wolin MS; Burke-Wolin TM; Mohazzab-H KM
    Respir Physiol; 1999 Apr; 115(2):229-38. PubMed ID: 10385036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreased synthesis and vasodilation to nitric oxide in piglets with hypoxia-induced pulmonary hypertension.
    Berkenbosch JW; Baribeau J; Perreault T
    Am J Physiol Lung Cell Mol Physiol; 2000 Feb; 278(2):L276-83. PubMed ID: 10666111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired Pulmonary Arterial Vasoconstriction and Nitric Oxide-Mediated Relaxation Underlie Severe Pulmonary Hypertension in the Sugen-Hypoxia Rat Model.
    Christou H; Hudalla H; Michael Z; Filatava EJ; Li J; Zhu M; Possomato-Vieira JS; Dias-Junior C; Kourembanas S; Khalil RA
    J Pharmacol Exp Ther; 2018 Feb; 364(2):258-274. PubMed ID: 29212831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of glucose-6-phosphate dehydrogenase promotes acute hypoxic pulmonary artery contraction.
    Gupte RS; Rawat DK; Chettimada S; Cioffi DL; Wolin MS; Gerthoffer WT; McMurtry IF; Gupte SA
    J Biol Chem; 2010 Jun; 285(25):19561-71. PubMed ID: 20363753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermittent hypoxia augments pulmonary vascular smooth muscle reactivity to NO: regulation by reactive oxygen species.
    Norton CE; Jernigan NL; Kanagy NL; Walker BR; Resta TC
    J Appl Physiol (1985); 2011 Oct; 111(4):980-8. PubMed ID: 21757577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction.
    Sommer N; Strielkov I; Pak O; Weissmann N
    Eur Respir J; 2016 Jan; 47(1):288-303. PubMed ID: 26493804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiol oxidation inhibits nitric oxide-mediated pulmonary artery relaxation and guanylate cyclase stimulation.
    Mingone CJ; Gupte SA; Ali N; Oeckler RA; Wolin MS
    Am J Physiol Lung Cell Mol Physiol; 2006 Mar; 290(3):L549-57. PubMed ID: 16272175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles for Nox4 in the contractile response of bovine pulmonary arteries to hypoxia.
    Ahmad M; Kelly MR; Zhao X; Kandhi S; Wolin MS
    Am J Physiol Heart Circ Physiol; 2010 Jun; 298(6):H1879-88. PubMed ID: 20304813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of pentose phosphate pathway-derived NADPH in hypoxic pulmonary vasoconstriction.
    Gupte SA; Okada T; McMurtry IF; Oka M
    Pulm Pharmacol Ther; 2006; 19(4):303-9. PubMed ID: 16203165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Brief Overview of Nitric Oxide and Reactive Oxygen Species Signaling in Hypoxia-Induced Pulmonary Hypertension.
    Jaitovich A; Jourd'heuil D
    Adv Exp Med Biol; 2017; 967():71-81. PubMed ID: 29047082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.