These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 20160707)

  • 1. Different sets of QTLs influence fitness variation in yeast.
    Romano GH; Gurvich Y; Lavi O; Ulitsky I; Shamir R; Kupiec M
    Mol Syst Biol; 2010; 6():346. PubMed ID: 20160707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Novel Alleles Conferring Superior Production of Rose Flavor Phenylethyl Acetate Using Polygenic Analysis in Yeast.
    Trindade de Carvalho B; Holt S; Souffriau B; Lopes Brandão R; Foulquié-Moreno MR; Thevelein JM
    mBio; 2017 Nov; 8(6):. PubMed ID: 29114020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concerted evolution of life stage performances signals recent selection on yeast nitrogen use.
    Ibstedt S; Stenberg S; Bagés S; Gjuvsland AB; Salinas F; Kourtchenko O; Samy JK; Blomberg A; Omholt SW; Liti G; Beltran G; Warringer J
    Mol Biol Evol; 2015 Jan; 32(1):153-61. PubMed ID: 25349282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deciphering the Genic Basis of Yeast Fitness Variation by Simultaneous Forward and Reverse Genetics.
    Maclean CJ; Metzger BPH; Yang JR; Ho WC; Moyers B; Zhang J
    Mol Biol Evol; 2017 Oct; 34(10):2486-2502. PubMed ID: 28472365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Causal inference of regulator-target pairs by gene mapping of expression phenotypes.
    Kulp DC; Jagalur M
    BMC Genomics; 2006 May; 7():125. PubMed ID: 16719927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting genetic interactions using parallel evolution in experimental populations.
    Fisher KJ; Kryazhimskiy S; Lang GI
    Philos Trans R Soc Lond B Biol Sci; 2019 Jul; 374(1777):20180237. PubMed ID: 31154981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fitness variation across subtle environmental perturbations reveals local modularity and global pleiotropy of adaptation.
    Kinsler G; Geiler-Samerotte K; Petrov DA
    Elife; 2020 Dec; 9():. PubMed ID: 33263280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution mutation mapping reveals parallel experimental evolution in yeast.
    Segrè AV; Murray AW; Leu JY
    PLoS Biol; 2006 Jul; 4(8):e256. PubMed ID: 16856782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Evolution and Resequencing Analysis of Yeast.
    Payen C; Dunham MJ
    Methods Mol Biol; 2016; 1361():361-74. PubMed ID: 26483032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rare variants contribute disproportionately to quantitative trait variation in yeast.
    Bloom JS; Boocock J; Treusch S; Sadhu MJ; Day L; Oates-Barker H; Kruglyak L
    Elife; 2019 Oct; 8():. PubMed ID: 31647408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of novel genes involved in neutral lipid storage by quantitative trait loci analysis of Saccharomyces cerevisiae.
    Pačnik K; Ogrizović M; Diepold M; Eisenberg T; Žganjar M; Žun G; Kužnik B; Gostinčar C; Curk T; Petrovič U; Natter K
    BMC Genomics; 2021 Feb; 22(1):110. PubMed ID: 33563210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic analysis of genome-wide fitness data in yeast reveals novel gene function and drug action.
    Hillenmeyer ME; Ericson E; Davis RW; Nislow C; Koller D; Giaever G
    Genome Biol; 2010; 11(3):R30. PubMed ID: 20226027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A noncomplementation screen for quantitative trait alleles in saccharomyces cerevisiae.
    Kim HS; Huh J; Riles L; Reyes A; Fay JC
    G3 (Bethesda); 2012 Jul; 2(7):753-60. PubMed ID: 22870398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary engineering reveals divergent paths when yeast is adapted to different acidic environments.
    Fletcher E; Feizi A; Bisschops MMM; Hallström BM; Khoomrung S; Siewers V; Nielsen J
    Metab Eng; 2017 Jan; 39():19-28. PubMed ID: 27815194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation.
    Eder M; Sanchez I; Brice C; Camarasa C; Legras JL; Dequin S
    BMC Genomics; 2018 Mar; 19(1):166. PubMed ID: 29490607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae.
    García-Ríos E; Morard M; Parts L; Liti G; Guillamón JM
    BMC Genomics; 2017 Feb; 18(1):159. PubMed ID: 28196526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative trait loci mapped to single-nucleotide resolution in yeast.
    Deutschbauer AM; Davis RW
    Nat Genet; 2005 Dec; 37(12):1333-40. PubMed ID: 16273108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linkage mapping of yeast cross protection connects gene expression variation to a higher-order organismal trait.
    Stuecker TN; Scholes AN; Lewis JA
    PLoS Genet; 2018 Apr; 14(4):e1007335. PubMed ID: 29649251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The abundance of cis-acting loci leading to differential allele expression in F1 mice and their relationship to loci harboring genes affecting complex traits.
    Yeo S; Hodgkinson CA; Zhou Z; Jung J; Leung M; Yuan Q; Goldman D
    BMC Genomics; 2016 Aug; 17(1):620. PubMed ID: 27515598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QTL of three agronomically important traits and their interactions with environment in a European x Chinese rapeseed population.
    Zhao JY; Becker HC; Ding HD; Zhang YF; Zhang DQ; Ecke W
    Yi Chuan Xue Bao; 2005 Sep; 32(9):969-78. PubMed ID: 16201242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.