These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 20160786)

  • 1. Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy.
    Khaing Oo MK; Han Y; Kanka J; Sukhishvili S; Du H
    Opt Lett; 2010 Feb; 35(4):466-8. PubMed ID: 20160786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forward-propagating surface-enhanced Raman scattering and intensity distribution in photonic crystal fiber with immobilized Ag nanoparticles.
    Oo MK; Han Y; Martini R; Sukhishvili S; Du H
    Opt Lett; 2009 Apr; 34(7):968-70. PubMed ID: 19340187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid surface-enhanced Raman scattering substrate from gold nanoparticle and photonic crystal: maneuverability and uniformity of Raman spectra.
    Wu CY; Huang CC; Jhang JS; Liu AC; Chiang CC; Hsieh ML; Huang PJ; Tuyen le D; Minh le Q; Yang TS; Chau LK; Kan HC; Hsu CC
    Opt Express; 2009 Nov; 17(24):21522-9. PubMed ID: 19997393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Core-cladding mode coupling and recoupling in photonic crystal fiber for enhanced overlap of evanescent field using long-period gratings.
    He Z; Zhu Y; Kanka J; Du H
    Opt Express; 2010 Jan; 18(2):507-12. PubMed ID: 20173870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-core photonic crystal fiber as a Raman spectroscopy platform with a silica core as an internal reference.
    Pristinski D; Du H
    Opt Lett; 2006 Nov; 31(22):3246-8. PubMed ID: 17072385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-enhanced Raman scattering on periodic metal nanotips with tunable sharpness.
    Linn NC; Sun CH; Arya A; Jiang P; Jiang B
    Nanotechnology; 2009 Jun; 20(22):225303. PubMed ID: 19433880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-enhanced Raman scattering-active photonic crystal fiber probe: Towards next generation liquid biopsy sensor with ultra high sensitivity.
    Dinish US; Beffara F; Humbert G; Auguste JL; Olivo M
    J Biophotonics; 2019 Nov; 12(11):e201900027. PubMed ID: 30891937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the surface enhanced raman scattering (SERS) of bacteria.
    Premasiri WR; Moir DT; Klempner MS; Krieger N; Jones G; Ziegler LD
    J Phys Chem B; 2005 Jan; 109(1):312-20. PubMed ID: 16851017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy.
    Konorov SO; Addison CJ; Schulze HG; Turner RF; Blades MW
    Opt Lett; 2006 Jun; 31(12):1911-3. PubMed ID: 16729112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double-clad hollow core photonic crystal fiber for coherent Raman endoscope.
    Brustlein S; Berto P; Hostein R; Ferrand P; Billaudeau C; Marguet D; Muir A; Knight J; Rigneault H
    Opt Express; 2011 Jun; 19(13):12562-8. PubMed ID: 21716497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber.
    U S D; Fu CY; Soh KS; Ramaswamy B; Kumar A; Olivo M
    Biosens Bioelectron; 2012 Mar; 33(1):293-8. PubMed ID: 22265083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring of heparin concentration in serum by Raman spectroscopy within hollow core photonic crystal fiber.
    Khetani A; Tiwari VS; Harb A; Anis H
    Opt Express; 2011 Aug; 19(16):15244-54. PubMed ID: 21934888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evanescent-field spectroscopy using structured optical fibers: detection of charge-transfer at the porphyrin-silica interface.
    Martelli C; Canning J; Reimers JR; Sintic M; Stocks D; Khoury T; Crossley MJ
    J Am Chem Soc; 2009 Mar; 131(8):2925-33. PubMed ID: 19203267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silver nanocrystal-modified silicon nanowires as substrates for surface-enhanced Raman and hyper-Raman scattering.
    Leng W; Yasseri AA; Sharma S; Li Z; Woo HY; Vak D; Bazan GC; Kelley AM
    Anal Chem; 2006 Sep; 78(17):6279-82. PubMed ID: 16944914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplexed microfluidic surface-enhanced Raman spectroscopy.
    Abu-Hatab NA; John JF; Oran JM; Sepaniak MJ
    Appl Spectrosc; 2007 Oct; 61(10):1116-22. PubMed ID: 17958963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-enhanced Raman spectroscopy using silver nanoparticles on a precoated microscope slide.
    Li YS; Cheng J; Chung KT
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Feb; 69(2):524-7. PubMed ID: 17631042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compact and portable multiline UV and visible Raman lasers in hydrogen-filled HC-PCF.
    Wang YY; Couny F; Light PS; Mangan BJ; Benabid F
    Opt Lett; 2010 Apr; 35(8):1127-9. PubMed ID: 20410941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe.
    Dinish US; Balasundaram G; Chang YT; Olivo M
    J Biophotonics; 2014 Nov; 7(11-12):956-65. PubMed ID: 23963680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering.
    Yang X; Shi C; Wheeler D; Newhouse R; Chen B; Zhang JZ; Gu C
    J Opt Soc Am A Opt Image Sci Vis; 2010 May; 27(5):977-84. PubMed ID: 20448763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.