These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system. Simoni RD; Roseman S; Saier MH J Biol Chem; 1976 Nov; 251(21):6584-97. PubMed ID: 789368 [TBL] [Abstract][Full Text] [Related]
3. Unique dicistronic operon (ptsI-crr) in Mycoplasma capricolum encoding enzyme I and the glucose-specific enzyme IIA of the phosphoenolpyruvate:sugar phosphotransferase system: cloning, sequencing, promoter analysis, and protein characterization. Zhu PP; Reizer J; Peterkofsky A Protein Sci; 1994 Nov; 3(11):2115-28. PubMed ID: 7703858 [TBL] [Abstract][Full Text] [Related]
4. Effect of replacing the general energy-coupling proteins of the PEP:sugar phosphotransferase system of Salmonella typhimurium with their fructose-inducible counterparts on utilization of the PTS sugar glucitol. Sutrina SL; Alleyne L; Hoyte K; Blenman M Microbiology (Reading); 2002 Dec; 148(Pt 12):3857-3864. PubMed ID: 12480889 [TBL] [Abstract][Full Text] [Related]
5. Physiological consequences of the complete loss of phosphoryl-transfer proteins HPr and FPr of the phosphoenolpyruvate:sugar phosphotransferase system and analysis of fructose (fru) operon expression in Salmonella typhimurium. Feldheim DA; Chin AM; Nierva CT; Feucht BU; Cao YW; Xu YF; Sutrina SL; Saier MH J Bacteriol; 1990 Sep; 172(9):5459-69. PubMed ID: 2203752 [TBL] [Abstract][Full Text] [Related]
6. Genetic analysis of succinate utilization in enzyme I mutants of the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli. Alexander JK; Tyler B J Bacteriol; 1975 Oct; 124(1):252-61. PubMed ID: 170246 [TBL] [Abstract][Full Text] [Related]
7. Promoter-like mutation affecting HPr and enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium. Cordaro JC; Anderson RP; Grogan EW; Wenzel DJ; Engler M; Roseman S J Bacteriol; 1974 Oct; 120(1):245-52. PubMed ID: 4608878 [TBL] [Abstract][Full Text] [Related]
10. Kinetic analyses of the sugar phosphate:sugar transphosphorylation reaction catalyzed by the glucose enzyme II complex of the bacterial phosphotransferase system. Rephaeli AW; Saier MH J Biol Chem; 1978 Nov; 253(21):7595-7. PubMed ID: 359550 [TBL] [Abstract][Full Text] [Related]
11. Coordinate regulation of adenylate cyclase and carbohydrate permeases by the phosphoenolpyruvate:sugar phosphotransferase system in Salmonella typhimurium. Saier MH; Feucht BU J Biol Chem; 1975 Sep; 250(17):7078-80. PubMed ID: 169265 [TBL] [Abstract][Full Text] [Related]
12. Effect of growth rate and glucose concentration on the activity of the phosphoenolpyruvate phosphotransferase system in Streptococcus mutans Ingbritt grown in continuous culture. Ellwood DC; Phipps PJ; Hamilton IR Infect Immun; 1979 Feb; 23(2):224-31. PubMed ID: 33901 [TBL] [Abstract][Full Text] [Related]
13. Genetics of the bacterial phosphoenolpyruvate: glycose phosphotransferase system. Cordaro C Annu Rev Genet; 1976; 10():341-59. PubMed ID: 189682 [No Abstract] [Full Text] [Related]
14. Regulation of carbohydrate uptake and adenylate cyclase activity mediated by the enzymes II of the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli. Saier MH; Feucht BU; Hofstadter LJ J Biol Chem; 1976 Feb; 251(3):883-92. PubMed ID: 765335 [TBL] [Abstract][Full Text] [Related]
15. Sugar transport. 2nducer exclusion and regulation of the melibiose, maltose, glycerol, and lactose transport systems by the phosphoenolpyruvate:sugar phosphotransferase system. Saier MH; Roseman S J Biol Chem; 1976 Nov; 251(21):6606-15. PubMed ID: 789370 [TBL] [Abstract][Full Text] [Related]
16. A promiscuous binding surface: crystal structure of the IIA domain of the glucose-specific permease from Mycoplasma capricolum. Huang K; Kapadia G; Zhu PP; Peterkofsky A; Herzberg O Structure; 1998 Jun; 6(6):697-710. PubMed ID: 9705652 [TBL] [Abstract][Full Text] [Related]
17. Unique monocistronic operon (ptsH) in Mycoplasma capricolum encoding the phosphocarrier protein, HPr, of the phosphoenolpyruvate:sugar phosphotransferase system. Cloning, sequencing, and characterization of ptsH. Zhu PP; Reizer J; Reizer A; Peterkofsky A J Biol Chem; 1993 Dec; 268(35):26531-40. PubMed ID: 8253782 [TBL] [Abstract][Full Text] [Related]
18. Replacing the general energy-coupling proteins of the phospho-enol-pyruvate: sugar phosphotransferase system of Salmonella typhimurium with fructose-inducible counterparts results in the inability to utilize nonphosphotransferase system sugars. Sutrina SL; Inniss PI; Lazarus LA; Inglis L; Maximilien J Can J Microbiol; 2007 May; 53(5):586-98. PubMed ID: 17668017 [TBL] [Abstract][Full Text] [Related]
19. Expression, purification, and characterization of enzyme IIA(glc) of the phosphoenolpyruvate:sugar phosphotransferase system of Mycoplasma capricolum. Zhu PP; Nosworthy N; Ginsburg A; Miyata M; Seok YJ; Peterkofsky A Biochemistry; 1997 Jun; 36(23):6947-53. PubMed ID: 9188690 [TBL] [Abstract][Full Text] [Related]
20. Facilitated diffusion of fructose via the phosphoenolpyruvate/glucose phosphotransferase system of Escherichia coli. Kornberg HL; Lambourne LT; Sproul AA Proc Natl Acad Sci U S A; 2000 Feb; 97(4):1808-12. PubMed ID: 10677538 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]