These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 20160946)

  • 21. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression.
    Brown JD; Summers MF; Johnson BA
    J Biomol NMR; 2015 Sep; 63(1):39-52. PubMed ID: 26141454
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nuclear magnetic resonance chemical shift: comparison of estimated secondary structures in peptides by nuclear magnetic resonance and circular dichroism.
    Lee MS; Cao B
    Protein Eng; 1996 Jan; 9(1):15-25. PubMed ID: 9053898
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The 13C chemical shifts of amino acids in aqueous solution containing organic solvents: application to the secondary structure characterization of peptides in aqueous trifluoroethanol solution.
    Thanabal V; Omecinsky DO; Reily MD; Cody WL
    J Biomol NMR; 1994 Jan; 4(1):47-59. PubMed ID: 8130641
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the conformational equilibrium between the two major substates of RNase A using NMR chemical shifts.
    Camilloni C; Robustelli P; De Simone A; Cavalli A; Vendruscolo M
    J Am Chem Soc; 2012 Mar; 134(9):3968-71. PubMed ID: 22320129
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relativistic Spin-Orbit Heavy Atom on the Light Atom NMR Chemical Shifts: General Trends Across the Periodic Table Explained.
    Vícha J; Komorovsky S; Repisky M; Marek R; Straka M
    J Chem Theory Comput; 2018 Jun; 14(6):3025-3039. PubMed ID: 29676906
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accurate and cost-effective NMR chemical shift predictions for proteins using a molecules-in-molecules fragmentation-based method.
    Chandy SK; Thapa B; Raghavachari K
    Phys Chem Chem Phys; 2020 Dec; 22(47):27781-27799. PubMed ID: 33244526
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical shifts and three-dimensional protein structures.
    Oldfield E
    J Biomol NMR; 1995 Apr; 5(3):217-25. PubMed ID: 7787420
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accurate calculation, prediction, and assignment of 3He NMR chemical shifts of helium-3-encapsulated fullerenes and fullerene derivatives.
    Wang GW; Zhang XH; Zhan H; Guo QX; Wu YD
    J Org Chem; 2003 Aug; 68(17):6732-8. PubMed ID: 12919041
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NMR structural and dynamic characterization of the acid-unfolded state of apomyoglobin provides insights into the early events in protein folding.
    Yao J; Chung J; Eliezer D; Wright PE; Dyson HJ
    Biochemistry; 2001 Mar; 40(12):3561-71. PubMed ID: 11297422
    [TBL] [Abstract][Full Text] [Related]  

  • 30. QSAR studies of phenylhydrazine-substituted tetronic acid derivatives based on the
    Chen M; Lu AM; Hu Y; Yang CL
    Magn Reson Chem; 2019 Jun; 57(6):285-293. PubMed ID: 30632625
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure validation of natural products by quantum-mechanical GIAO calculations of 13C NMR chemical shifts.
    Barone G; Gomez-Paloma L; Duca D; Silvestri A; Riccio R; Bifulco G
    Chemistry; 2002 Jul; 8(14):3233-9. PubMed ID: 12203353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Consistent blind protein structure generation from NMR chemical shift data.
    Shen Y; Lange O; Delaglio F; Rossi P; Aramini JM; Liu G; Eletsky A; Wu Y; Singarapu KK; Lemak A; Ignatchenko A; Arrowsmith CH; Szyperski T; Montelione GT; Baker D; Bax A
    Proc Natl Acad Sci U S A; 2008 Mar; 105(12):4685-90. PubMed ID: 18326625
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identify five kinds of simple super-secondary structures with quadratic discriminant algorithm based on the chemical shifts.
    Kou G; Feng Y
    J Theor Biol; 2015 Sep; 380():392-8. PubMed ID: 26087283
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conformations in Solution and in Solid-State Polymorphs: Correlating Experimental and Calculated Nuclear Magnetic Resonance Chemical Shifts for Tolfenamic Acid.
    Blade H; Blundell CD; Brown SP; Carson J; Dannatt HRW; Hughes LP; Menakath AK
    J Phys Chem A; 2020 Oct; 124(43):8959-8977. PubMed ID: 32946236
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A probabilistic model for secondary structure prediction from protein chemical shifts.
    Mechelke M; Habeck M
    Proteins; 2013 Jun; 81(6):984-93. PubMed ID: 23292699
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unblocked statistical-coil tetrapeptides in aqueous solution: quantum-chemical computation of the carbon-13 NMR chemical shifts.
    Vila JA; Baldoni HA; Ripoll DR; Scheraga HA
    J Biomol NMR; 2003 Jun; 26(2):113-30. PubMed ID: 12766407
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The PROSECCO server for chemical shift predictions in ordered and disordered proteins.
    Sanz-Hernández M; De Simone A
    J Biomol NMR; 2017 Nov; 69(3):147-156. PubMed ID: 29119515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of 1H NMR chemical shifts to measure the quality of protein structures.
    Williamson MP; Kikuchi J; Asakura T
    J Mol Biol; 1995 Apr; 247(4):541-6. PubMed ID: 7723012
    [TBL] [Abstract][Full Text] [Related]  

  • 39. AM1 parameters for the prediction of 1H and 13C NMR chemical shifts in proteins.
    Williams DE; Peters MB; Wang B; Roitberg AE; Merz KM
    J Phys Chem A; 2009 Oct; 113(43):11550-9. PubMed ID: 19799435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ring current shifts in (19)F-NMR of membrane proteins.
    Liu D; Wüthrich K
    J Biomol NMR; 2016 May; 65(1):1-5. PubMed ID: 27240587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.