BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 20161071)

  • 1. Influence of vocal fold stiffness and acoustic loading on flow-induced vibration of a single-layer vocal fold model.
    Zhang Z; Neubauer J; Berry DA
    J Sound Vib; 2009 Apr; 322(1-2):299-313. PubMed ID: 20161071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds.
    Zhang Z; Neubauer J; Berry DA
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2841-9. PubMed ID: 17139742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of acoustic loading on an effective single mass model of the vocal folds.
    Zañartu M; Mongeau L; Wodicka GR
    J Acoust Soc Am; 2007 Feb; 121(2):1119-29. PubMed ID: 17348533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear source-filter coupling in phonation: theory.
    Titze IR
    J Acoust Soc Am; 2008 May; 123(5):2733-49. PubMed ID: 18529191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrative Insights into the Myoelastic-Aerodynamic Theory and Acoustics of Phonation. Scientific Tribute to Donald G. Miller.
    Švec JG; Schutte HK; Chen CJ; Titze IR
    J Voice; 2023 May; 37(3):305-313. PubMed ID: 33744068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental study of vocal-ventricular fold oscillations in voice production.
    Matsumoto T; Kanaya M; Ishimura K; Tokuda IT
    J Acoust Soc Am; 2021 Jan; 149(1):271. PubMed ID: 33514158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric vibration in a two-layer vocal fold model with left-right stiffness asymmetry: experiment and simulation.
    Zhang Z; Luu TH
    J Acoust Soc Am; 2012 Sep; 132(3):1626-35. PubMed ID: 22978891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of vocal fold vertical stiffness variation on voice production.
    Geng B; Xue Q; Zheng X
    J Acoust Soc Am; 2016 Oct; 140(4):2856. PubMed ID: 27794296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model.
    Zhang Z
    J Acoust Soc Am; 2016 Apr; 139(4):1493. PubMed ID: 27106298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronized and Desynchronized Dynamics Observed from Physical Models of the Vocal and Ventricular Folds.
    Matsumoto T; Kanaya M; Matsushima D; Han C; Tokuda IT
    J Voice; 2024 May; 38(3):572-584. PubMed ID: 34903395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subglottal pressure oscillations accompanying phonation.
    Sundberg J; Scherer R; Hess M; Müller F; Granqvist S
    J Voice; 2013 Jul; 27(4):411-21. PubMed ID: 23809566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effect of Vocal Fold Inferior Surface Hypertrophy on Voice Function in Excised Canine Larynges.
    Wang R; Bao H; Xu X; Piotrowski D; Zhang Y; Zhuang P
    J Voice; 2018 Jul; 32(4):396-402. PubMed ID: 28826980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of phonation onset in a two-layer vocal fold model.
    Zhang Z
    J Acoust Soc Am; 2009 Feb; 125(2):1091-102. PubMed ID: 19206884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence of phonation threshold pressure and frequency on vocal fold geometry and biomechanics.
    Zhang Z
    J Acoust Soc Am; 2010 Apr; 127(4):2554-62. PubMed ID: 20370037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of subglottal resonance upon vocal fold vibration.
    Austin SF; Titze IR
    J Voice; 1997 Dec; 11(4):391-402. PubMed ID: 9422272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity of Phonation Onset Pressure to Vocal Fold Stiffness Distribution.
    Deng JJ; Peterson SD
    J Biomech Eng; 2024 Aug; 146(8):. PubMed ID: 38345603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noninvasive monitoring of vocal fold vertical vibration using the acoustic Doppler effect.
    Tao C; Jiang JJ; Wu D; Liu X; Chodara A
    J Voice; 2012 Nov; 26(6):677-81. PubMed ID: 22521534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of nodule size and stiffness on phonation threshold and collision pressures in a synthetic hemilaryngeal vocal fold model.
    Motie-Shirazi M; Zañartu M; Peterson SD; Mehta DD; Hillman RE; Erath BD
    J Acoust Soc Am; 2023 Jan; 153(1):654. PubMed ID: 36732229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of flow-structure interaction in the larynx during phonation using an immersed-boundary method.
    Luo H; Mittal R; Bielamowicz SA
    J Acoust Soc Am; 2009 Aug; 126(2):816-24. PubMed ID: 19640046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using the relaxation oscillations principle for simple phonation modeling.
    Garrel R; Scherer R; Nicollas R; Giovanni A; Ouaknine M
    J Voice; 2008 Jul; 22(4):385-98. PubMed ID: 17280814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.