These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 201613)

  • 21. A novel mode of lactate metabolism in strictly anaerobic bacteria.
    Weghoff MC; Bertsch J; Müller V
    Environ Microbiol; 2015 Mar; 17(3):670-7. PubMed ID: 24762045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Studies on the reduction of nitroblue tetrazolium chloride mediated through the action of NADH and phenazine methosulphate.
    Ponti V; Dianzani MU; Cheeseman K; Slater TF
    Chem Biol Interact; 1978 Dec; 23(3):281-91. PubMed ID: 214250
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Photooxidation and light-induced transport of phenazine methosulfate in chromatophores of purple bacteria].
    Bulychev AA; Grishanova NP; Karagulian AK; Kononenko AA; Kurella GA
    Biokhimiia; 1981 Jun; 46(6):1057-66. PubMed ID: 6789897
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HISTOCHEMICAL STUDIES OF LEUKOCYTES FROM AN INFLAMMATORY EXUDATE. VI. DEMONSTRATION OF NON-DIAPHORASE-COUPLED DEHYDROGENASE ACTIVITY USING PHENAZINE METHOSULPHATE.
    WULFF HR
    Acta Haematol; 1964 Jul; 32():17-26. PubMed ID: 14204453
    [No Abstract]   [Full Text] [Related]  

  • 25. Phenazine methosulfate mediated photoinactivation of some energy linked reactions in Rhodospirillum rubrum.
    Kerber NL; Pucheu NL; García AF
    Biochem Biophys Res Commun; 1978 Mar; 81(2):667-71. PubMed ID: 208532
    [No Abstract]   [Full Text] [Related]  

  • 26. Association and redox properties of the putidaredoxin reductase-nicotinamide adenine dinucleotide complex.
    Reipa V; Holden MJ; Vilker VL
    Biochemistry; 2007 Nov; 46(45):13235-44. PubMed ID: 17941648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NADH oxidation by quinone electron acceptors.
    Cénas NK; Kanapieniené JJ; Kulys JJ
    Biochim Biophys Acta; 1984 Oct; 767(1):108-12. PubMed ID: 6487613
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation and kinetic properties of 5-ethylphenazine-lactate-dehydrogenase-NAD+ conjugate, a semisynthetic lactate oxidase showing a hide-and-seek effect.
    Yomo T; Urabe I; Okada H
    Eur J Biochem; 1992 Feb; 203(3):533-42. PubMed ID: 1735437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrostatic and redox potential effects on the rat of electron-transfer reaction of nicotinamide adenine dinucleotides with 1-substituted 5-ethylphenazines.
    Yomo T; Urabe I; Okada H
    Biochim Biophys Acta; 1990 Jun; 1017(2):139-42. PubMed ID: 2350551
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Site of interaction between phenazine methosulphate and the respiratory chain of Bacillus subtilis.
    Bisschop A; Bergsma J; Konings WN
    Eur J Biochem; 1979 Jan; 93(2):369-74. PubMed ID: 218814
    [No Abstract]   [Full Text] [Related]  

  • 31. The role of exogenous electron carriers in NAD(P)-dependent dehydrogenase cytochemistry studied in vitro and with a model system of polyacrylamide films.
    Van Noorden CJ; Tas J
    J Histochem Cytochem; 1982 Jan; 30(1):12-20. PubMed ID: 6172468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The use of NADH as a standard in a modified PMS-INT colorimetric assay of lactate dehydrogenase.
    Buttery JE; Lim HH; de Witt GF
    Clin Chim Acta; 1976 Nov; 73(1):109-15. PubMed ID: 187362
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of the enzymic electric cell method to the activity assay of NAD-linked dehydrogenases.
    Nakano K; Kimura K; Inokuchi H; Yagi T
    J Biochem; 1975 Dec; 78(6):1347-52. PubMed ID: 773927
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tetracyanoquinodimethane-mediated flow injection analysis electrochemical sensor for NADH coupled with dehydrogenase enzymes.
    Pandey PC
    Anal Biochem; 1994 Sep; 221(2):392-6. PubMed ID: 7810883
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative Analysis of Redox Pool (NAD
    Awasthi JP; Saha B; Koyama H; Panda SK
    Bio Protoc; 2022 Jun; 12(12):. PubMed ID: 35864900
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catalytic properties of three lactate dehydrogenases from potato tubers (Solanum tuberosum).
    Rothe GM
    Arch Biochem Biophys; 1974 May; 162(1):17-21. PubMed ID: 4364697
    [No Abstract]   [Full Text] [Related]  

  • 37. Modular Engineering Intracellular NADH Regeneration Boosts Extracellular Electron Transfer of Shewanella oneidensis MR-1.
    Li F; Li Y; Sun L; Chen X; An X; Yin C; Cao Y; Wu H; Song H
    ACS Synth Biol; 2018 Mar; 7(3):885-895. PubMed ID: 29429342
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytochemical localization of two glycolytic dehydrogenases in white skeletal muscle.
    Fahimi HD; Karnovsky MJ
    J Cell Biol; 1966 Apr; 29(1):113-28. PubMed ID: 4288329
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 5-Hydroxytryptophan as a precursor of a catalyst for the oxidation of NADH.
    de-los-Santos-Alvarez N; Lobo-Castañón MJ; Miranda-Ordieres AJ; Tuñón-Blanco P; Abruña HD
    Anal Chem; 2005 Apr; 77(8):2624-31. PubMed ID: 15828802
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Catalytic photoinduced electron transport across a lipid bilayer mediated by a membrane-soluble electron relay.
    Limburg B; Bouwman E; Bonnet S
    Chem Commun (Camb); 2015 Dec; 51(96):17128-31. PubMed ID: 26456173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.