These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 20161508)

  • 1. Electron tunneling through sensitizer wires bound to proteins.
    Hartings MR; Kurnikov IV; Dunn AR; Winkler JR; Gray HB; Ratner MA
    Coord Chem Rev; 2010 Feb; 254(3):248-253. PubMed ID: 20161508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanosecond photoreduction of cytochrome p450cam by channel-specific Ru-diimine electron tunneling wires.
    Dunn AR; Dmochowski IJ; Winkler JR; Gray HB
    J Am Chem Soc; 2003 Oct; 125(41):12450-6. PubMed ID: 14531688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How donor-bridge-acceptor energetics influence electron tunneling dynamics and their distance dependences.
    Wenger OS
    Acc Chem Res; 2011 Jan; 44(1):25-35. PubMed ID: 20945886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational states of cytochrome P450cam revealed by trapping of synthetic molecular wires.
    Hays AM; Dunn AR; Chiu R; Gray HB; Stout CD; Goodin DB
    J Mol Biol; 2004 Nov; 344(2):455-69. PubMed ID: 15522298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Luminescent ruthenium(II)- and rhenium(I)-diimine wires bind nitric oxide synthase.
    Dunn AR; Belliston-Bittner W; Winkler JR; Getzoff ED; Stuehr DJ; Gray HB
    J Am Chem Soc; 2005 Apr; 127(14):5169-73. PubMed ID: 15810851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Donor/acceptor coupling shortcuts in electron transfer within ruthenium-modified derivatives of cytochrome b(562).
    Prytkova TR; Shunaev VV; Glukhova OE; Kurnikov IV
    J Phys Chem B; 2015 Jan; 119(4):1288-94. PubMed ID: 25531130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab initio based calculations of electron-transfer rates in metalloproteins.
    Prytkova TR; Kurnikov IV; Beratan DN
    J Phys Chem B; 2005 Feb; 109(4):1618-25. PubMed ID: 16851133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron transfer, decoherence, and protein dynamics: insights from atomistic simulations.
    Narth C; Gillet N; Cailliez F; Lévy B; de la Lande A
    Acc Chem Res; 2015 Apr; 48(4):1090-7. PubMed ID: 25730126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational gating of long distance electron transfer through wire-like bridges in donor-bridge-acceptor molecules.
    Davis WB; Ratner MA; Wasielewski MR
    J Am Chem Soc; 2001 Aug; 123(32):7877-86. PubMed ID: 11493061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical characterization of charge transport in chromia (alpha-Cr2O3).
    Iordanova N; Dupuis M; Rosso KM
    J Chem Phys; 2005 Aug; 123(7):074710. PubMed ID: 16229613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent Effects on Donor-Acceptor Couplings in Peptides. A Combined QM and MD Study.
    Wallrapp F; Voityuk A; Guallar V
    J Chem Theory Comput; 2009 Dec; 5(12):3312-20. PubMed ID: 26602511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-Electron Transfer Pathways.
    Lin J; Balamurugan D; Zhang P; Skourtis SS; Beratan DN
    J Phys Chem B; 2015 Jun; 119(24):7589-97. PubMed ID: 25583181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the effect of the nature of the bridge on oxidative or reductive photoinduced electron transfer in donor-bridge-acceptor systems.
    Arrigo A; Santoro A; Indelli MT; Natali M; Scandola F; Campagna S
    Phys Chem Chem Phys; 2014 Jan; 16(3):818-26. PubMed ID: 24287945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherence in electron transfer pathways.
    Skourtis SS; Beratan DN; Waldeck DH
    Procedia Chem; 2011 Jan; 3(1):99-104. PubMed ID: 23833692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluoride binding to an organoboron wire controls photoinduced electron transfer.
    Chen J; Wenger OS
    Chem Sci; 2015 Jun; 6(6):3582-3592. PubMed ID: 29511520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Electron-conformational interactions at the active site of reduced bacterial cytochrome P450cam induced by a substrate and analysis of the electron structure of heme].
    Sharonov IuA
    Mol Biol (Mosk); 1992; 26(6):1251-62. PubMed ID: 1491671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dexter energy transfer pathways.
    Skourtis SS; Liu C; Antoniou P; Virshup AM; Beratan DN
    Proc Natl Acad Sci U S A; 2016 Jul; 113(29):8115-20. PubMed ID: 27382185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactive Regulation between Aliphatic Hydroxylation and Aromatic Hydroxylation of Thaxtomin D in TxtC: A Theoretical Investigation.
    Yuan C; Ouyang Q; Wang X; Li X; Tan H; Chen G
    Inorg Chem; 2021 May; 60(9):6433-6445. PubMed ID: 33861573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunneling and Nonadiabatic Effects on a Proton-Coupled Electron Transfer Model for the Q
    Camilo SRG; Curtolo F; Galassi VV; Arantes GM
    J Chem Inf Model; 2021 Apr; 61(4):1840-1849. PubMed ID: 33793213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):797-811. PubMed ID: 11061976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.