These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 20161690)

  • 1. Osmotic Swelling Pressure Response of Smart Hydrogels Suitable for Chronically-Implantable Glucose Sensors.
    Lin G; Chang S; Hao H; Tathireddy P; Orthner M; Magda J; Solzbacher F
    Sens Actuators B Chem; 2010 Jan; 144(1):332. PubMed ID: 20161690
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Farhoudi N; Laurentius LB; Magda JJ; Reiche CF; Solzbacher F
    ACS Sens; 2021 Oct; 6(10):3587-3595. PubMed ID: 34543020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of swelling of responsive gels with nanometer resolution. Fiber-optic based platform for hydrogels as signal transducers.
    Tierney S; Hjelme DR; Stokke BT
    Anal Chem; 2008 Jul; 80(13):5086-93. PubMed ID: 18491924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constant-volume hydrogel osmometer: a new device concept for miniature biosensors.
    Han IS; Han MH; Kim J; Lew S; Lee YJ; Horkay F; Magda JJ
    Biomacromolecules; 2002; 3(6):1271-5. PubMed ID: 12425665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic Analysis of the Selectivity Enhancement Obtained by Using Smart Hydrogels That Are Zwitterionic When Detecting Glucose With Boronic Acid Moieties.
    Horkay F; Cho SH; Tathireddy P; Rieth L; Solzbacher F; Magda J
    Sens Actuators B Chem; 2011 Dec; 160(1):1363-1371. PubMed ID: 22190765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smart Hydrogel Swelling State Detection Based on a Power-Transfer Transduction Principle.
    Ahmed B; Reiche CF; Magda JJ; Solzbacher F; Körner J
    ACS Appl Polym Mater; 2024 May; 6(9):5544-5554. PubMed ID: 38752016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Swelling pressure induced phase-volume transition in hybrid biopolymer gels caused by unfolding of folded crosslinks: a model.
    Dusek K; Dusková-Smrcková M; Ilavský M; Stewart R; Kopecek J
    Biomacromolecules; 2003; 4(6):1818-26. PubMed ID: 14606914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free swelling and confined smart hydrogels for applications in chemomechanical sensors for physiological monitoring.
    Lin G; Chang S; Kuo CH; Magda J; Solzbacher F
    Sens Actuators B Chem; 2009 Feb; 136(1):186. PubMed ID: 20130753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-Term
    Liu J; Fang X; Zhang Z; Liu Z; Liu J; Sun K; Yuan Z; Yu J; Chiu DT; Wu C
    Anal Chem; 2022 Feb; 94(4):2195-2203. PubMed ID: 35034435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogel-Based BioMEMS platforms for smart drug delivery.
    Ziaie B; Siegel RA
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():2670. PubMed ID: 17511110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous glucose sensing with fluorescent thin-film hydrogels. 2. Fiber optic sensor fabrication and in vitro testing.
    Thoniyot P; Cappuccio FE; Gamsey S; Cordes DB; Wessling RA; Singaram B
    Diabetes Technol Ther; 2006 Jun; 8(3):279-87. PubMed ID: 16800749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impedance spectroscopy for monosaccharides detection using responsive hydrogel modified paper-based electrodes.
    Daikuzono CM; Delaney C; Tesfay H; Florea L; Oliveira ON; Morrin A; Diamond D
    Analyst; 2017 Mar; 142(7):1133-1139. PubMed ID: 28300229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of glucose levels using a functionalized hydrogel-optical fiber biosensor: toward continuous monitoring of blood glucose in vivo.
    Tierney S; Falch BM; Hjelme DR; Stokke BT
    Anal Chem; 2009 May; 81(9):3630-6. PubMed ID: 19323502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogel composite mimics biological tissues.
    Horkay F; Basser PJ
    Soft Matter; 2022 Jun; 18(23):4414-4426. PubMed ID: 35638897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose sensors based on a responsive gel incorporated as a Fabry-Perot cavity on a fiber-optic readout platform.
    Tierney S; Volden S; Stokke BT
    Biosens Bioelectron; 2009 Mar; 24(7):2034-9. PubMed ID: 19062267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the in vitro swelling behavior of poly(vinyl alcohol) hydrogels in osmotic pressure solution for soft tissue replacement.
    Holloway JL; Spiller KL; Lowman AM; Palmese GR
    Acta Biomater; 2011 Jun; 7(6):2477-82. PubMed ID: 21329769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study on two phenylboronic acid based glucose-sensitive hydrogels.
    Xu F; Liu G; Zhang Q; Siegel RA
    Front Biosci (Elite Ed); 2010 Jan; 2(2):657-67. PubMed ID: 20036909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of dexamethasone-loaded poly(lactic-co-glycolic acid) microsphere/poly(vinyl alcohol) hydrogel composite coatings on the basic characteristics of implantable glucose sensors.
    Wang Y; Vaddiraju S; Qiang L; Xu X; Papadimitrakopoulos F; Burgess DJ
    J Diabetes Sci Technol; 2012 Nov; 6(6):1445-53. PubMed ID: 23294792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A smart hydrogel system for visual detection of glucose.
    Wu M; Zhang Y; Liu Q; Huang H; Wang X; Shi Z; Li Y; Liu S; Xue L; Lei Y
    Biosens Bioelectron; 2019 Oct; 142():111547. PubMed ID: 31387025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smart hydrogel based microsensing platform for continuous glucose monitoring.
    Tathireddy P; Avula M; Lin G; Cho SH; Guenther M; Schulz V; Gerlach G; Magda JJ; Solzbacher F
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():677-9. PubMed ID: 21095892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.