BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 20161730)

  • 1. Engineering clostridium strain to accept unmethylated DNA.
    Dong H; Zhang Y; Dai Z; Li Y
    PLoS One; 2010 Feb; 5(2):e9038. PubMed ID: 20161730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CAC2634-disrupted mutant of Clostridium acetobutylicum can be electrotransformed in air.
    Dong H; Tao W; Zhu L; Zhang Y; Li Y
    Lett Appl Microbiol; 2011 Sep; 53(3):379-82. PubMed ID: 21711370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824.
    Mermelstein LD; Papoutsakis ET
    Appl Environ Microbiol; 1993 Apr; 59(4):1077-81. PubMed ID: 8386500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
    Bruder MR; Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Oct; 82(20):6109-6119. PubMed ID: 27496775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a methyl-specific restriction system in Clostridium acetobutylicum strain N1-4081.
    Azeddoug H; Hubert J; Reysset G
    FEMS Microbiol Lett; 1989 Dec; 53(3):323-6. PubMed ID: 2612893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted gene engineering in Clostridium cellulolyticum H10 without methylation.
    Cui GZ; Hong W; Zhang J; Li WL; Feng Y; Liu YJ; Cui Q
    J Microbiol Methods; 2012 Jun; 89(3):201-8. PubMed ID: 22450138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering cellulase activity into Clostridium acetobutylicum.
    Fierobe HP; Mingardon F; Chanal A
    Methods Enzymol; 2012; 510():301-16. PubMed ID: 22608733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum.
    Wasels F; Jean-Marie J; Collas F; López-Contreras AM; Lopes Ferreira N
    J Microbiol Methods; 2017 Sep; 140():5-11. PubMed ID: 28610973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition sequence of a new methyl-specific restriction system from Clostridium acetobutylicum strain ABKn8.
    Azeddoug H; Reysset G
    FEMS Microbiol Lett; 1991 Mar; 62(2-3):153-6. PubMed ID: 2040424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single Crossover-Mediated Markerless Genome Engineering in Clostridium acetobutylicum.
    Lee SH; Kim HJ; Shin YA; Kim KH; Lee SJ
    J Microbiol Biotechnol; 2016 Apr; 26(4):725-9. PubMed ID: 26767573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. I-SceI-mediated scarless gene modification via allelic exchange in Clostridium.
    Zhang N; Shao L; Jiang Y; Gu Y; Li Q; Liu J; Jiang W; Yang S
    J Microbiol Methods; 2015 Jan; 108():49-60. PubMed ID: 25451462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a methyl-specific restriction system mediated by a conjugative element from Streptomyces bambergiensis.
    Zotchev SB; Schrempf H; Hutchinson CR
    J Bacteriol; 1995 Aug; 177(16):4809-12. PubMed ID: 7642510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selfish behavior of restriction-modification systems.
    Naito T; Kusano K; Kobayashi I
    Science; 1995 Feb; 267(5199):897-9. PubMed ID: 7846533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural transformation of an engineered Helicobacter pylori strain deficient in type II restriction endonucleases.
    Zhang XS; Blaser MJ
    J Bacteriol; 2012 Jul; 194(13):3407-16. PubMed ID: 22522893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial conversion of glycerol to 1,3-propanediol: physiological comparison of a natural producer, Clostridium butyricum VPI 3266, and an engineered strain, Clostridium acetobutylicum DG1(pSPD5).
    González-Pajuelo M; Meynial-Salles I; Mendes F; Soucaille P; Vasconcelos I
    Appl Environ Microbiol; 2006 Jan; 72(1):96-101. PubMed ID: 16391030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of a restriction minus enteropathogenic Escherichia coli E2348/69 strain that is efficiently transformed with large, low copy plasmids.
    Hobson N; Price NL; Ward JD; Raivio TL
    BMC Microbiol; 2008 Aug; 8():134. PubMed ID: 18681975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A functional recT gene for recombineering of Clostridium.
    Dong H; Tao W; Gong F; Li Y; Zhang Y
    J Biotechnol; 2014 Mar; 173():65-7. PubMed ID: 24384234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vector construction, transformation, and gene amplification in Clostridium acetobutylicum ATCC 824.
    Lee SY; Mermelstein LD; Bennett GN; Papoutsakis ET
    Ann N Y Acad Sci; 1992 Oct; 665():39-51. PubMed ID: 1416617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering the robustness of Clostridium acetobutylicum by introducing glutathione biosynthetic capability.
    Zhu L; Dong H; Zhang Y; Li Y
    Metab Eng; 2011 Jul; 13(4):426-34. PubMed ID: 21296183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ClosTron-mediated engineering of Clostridium.
    Kuehne SA; Heap JT; Cooksley CM; Cartman ST; Minton NP
    Methods Mol Biol; 2011; 765():389-407. PubMed ID: 21815105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.