BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 20162136)

  • 1. Surface-initiated Kumada catalyst-transfer polycondensation of poly(9,9-dioctylfluorene) from organosilica particles: chain-confinement promoted beta-phase formation.
    Tkachov R; Senkovskyy V; Horecha M; Oertel U; Stamm M; Kiriy A
    Chem Commun (Camb); 2010 Mar; 46(9):1425-7. PubMed ID: 20162136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Hairy" poly(3-hexylthiophene) particles prepared via surface-initiated Kumada catalyst-transfer polycondensation.
    Senkovskyy V; Tkachov R; Beryozkina T; Komber H; Oertel U; Horecha M; Bocharova V; Stamm M; Gevorgyan SA; Krebs FC; Kiriy A
    J Am Chem Soc; 2009 Nov; 131(45):16445-53. PubMed ID: 19860410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microparticle-supported conjugated polyelectrolyte brushes prepared by surface-initiated kumada catalyst transfer polycondensation for sensor applications.
    Tkachov R; Senkovskyy V; Oertel U; Synytska A; Horecha M; Kiriy A
    Macromol Rapid Commun; 2010 Dec; 31(24):2146-50. PubMed ID: 21567643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of conjugated polymer brushes by surface-initiated catalyst-transfer polycondensation.
    Sontag SK; Marshall N; Locklin J
    Chem Commun (Camb); 2009 Jun; (23):3354-6. PubMed ID: 19503868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface engineering using Kumada catalyst-transfer polycondensation (KCTP): preparation and structuring of poly(3-hexylthiophene)-based graft copolymer brushes.
    Khanduyeva N; Senkovskyy V; Beryozkina T; Horecha M; Stamm M; Uhrich C; Riede M; Leo K; Kiriy A
    J Am Chem Soc; 2009 Jan; 131(1):153-61. PubMed ID: 19128176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Random catalyst walking along polymerized poly(3-hexylthiophene) chains in Kumada catalyst-transfer polycondensation.
    Tkachov R; Senkovskyy V; Komber H; Sommer JU; Kiriy A
    J Am Chem Soc; 2010 Jun; 132(22):7803-10. PubMed ID: 20465260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-confined nickel mediated cross-coupling reactions: characterization of initiator environment in Kumada catalyst-transfer polycondensation.
    Sontag SK; Sheppard GR; Usselman NM; Marshall N; Locklin J
    Langmuir; 2011 Oct; 27(19):12033-41. PubMed ID: 21875096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conductive polymer brushes of regioregular head-to-tail poly(3-alkylthiophenes) via catalyst-transfer surface-initiated polycondensation.
    Senkovskyy V; Khanduyeva N; Komber H; Oertel U; Stamm M; Kuckling D; Kiriy A
    J Am Chem Soc; 2007 May; 129(20):6626-32. PubMed ID: 17469830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of TiO2-poly(3-hexylthiophene) hybrid particles through surface-initiated Kumada catalyst-transfer polycondensation.
    Boon F; Moerman D; Laurencin D; Richeter S; Guari Y; Mehdi A; Dubois P; Lazzaroni R; Clément S
    Langmuir; 2014 Sep; 30(38):11340-7. PubMed ID: 25188446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-Initiated Synthesis of Conjugated Microporous Polymers: Chain-Growth Kumada Catalyst-Transfer Polycondensation at Work.
    Senkovskyy V; Senkovska I; Kiriy A
    ACS Macro Lett; 2012 Apr; 1(4):494-498. PubMed ID: 35585748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalysts for suzuki polycondensation: ionic and "quasi-ionic" amphipathic palladium complexes with self-phase-transfer features.
    Li J; Fu H; Hu P; Zhang Z; Li X; Cheng Y
    Chemistry; 2012 Oct; 18(44):13941-4. PubMed ID: 22996667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chain-growth polycondensation for well-defined condensation polymers and polymer architecture.
    Yokozawa T; Yokoyama A
    Chem Rec; 2005; 5(1):47-57. PubMed ID: 15806548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal Conductance of Poly(3-methylthiophene) Brushes.
    Roy A; Bougher TL; Geng R; Ke Y; Locklin J; Cola BA
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25578-85. PubMed ID: 27579585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chain confinement promotes β-phase formation in polyfluorene-based photoluminescent ionogels.
    Evans RC; Marr PC
    Chem Commun (Camb); 2012 Apr; 48(31):3742-4. PubMed ID: 22398716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium/poly(9,9-dioctylfluorene) interaction: a theoretical study.
    Sun SL; Lin CS; Zhang RQ; Lee CS; Lee ST
    J Phys Chem B; 2005 Jul; 109(26):12868-73. PubMed ID: 16852597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-initiated polymerization of conjugated polymers.
    Marshall N; Sontag SK; Locklin J
    Chem Commun (Camb); 2011 May; 47(20):5681-9. PubMed ID: 21399814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kumada Catalyst-Transfer Polycondensation: Mechanism, Opportunities, and Challenges.
    Kiriy A; Senkovskyy V; Sommer M
    Macromol Rapid Commun; 2011 Oct; 32(19):1503-17. PubMed ID: 21800394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic formation of silica thin films by surface-initiated polymerization of 2-(dimethylamino)ethyl methacrylate and silicic acid.
    Kim DJ; Lee KB; Chi YS; Kim WJ; Paik HJ; Choi IS
    Langmuir; 2004 Sep; 20(19):7904-6. PubMed ID: 15350051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-color sum frequency generation study of poly(9,9-dioctylfluorene)/electrode interfaces.
    Miyamae T; Tsukagoshi K; Mizutani W
    Phys Chem Chem Phys; 2010 Nov; 12(44):14666-9. PubMed ID: 20936220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled catalyst transfer polycondensation and surface-initiated polymerization of a p-phenyleneethynylene-based monomer.
    Kang S; Ono RJ; Bielawski CW
    J Am Chem Soc; 2013 Apr; 135(13):4984-7. PubMed ID: 23521089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.