These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 20162140)

  • 1. Dense core-shell structured SnO2/C composites as high performance anodes for lithium ion batteries.
    Liu J; Li W; Manthiram A
    Chem Commun (Camb); 2010 Mar; 46(9):1437-9. PubMed ID: 20162140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SnO2/α-MoO3 core-shell nanobelts and their extraordinarily high reversible capacity as lithium-ion battery anodes.
    Xue XY; Chen ZH; Xing LL; Yuan S; Chen YJ
    Chem Commun (Camb); 2011 May; 47(18):5205-7. PubMed ID: 21412547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of carbon-SnO2 core-sheath composite nanofibers for superior lithium storage.
    Ji L; Lin Z; Guo B; Medford AJ; Zhang X
    Chemistry; 2010 Oct; 16(38):11543-8. PubMed ID: 20827708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanofibers Comprising Yolk-Shell Sn@void@SnO/SnO₂ and Hollow SnO/SnO₂ and SnO₂ Nanospheres via the Kirkendall Diffusion Effect and Their Electrochemical Properties.
    Cho JS; Kang YC
    Small; 2015 Sep; 11(36):4673-81. PubMed ID: 26058833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SnO2/WO3 core-shell nanorods and their high reversible capacity as lithium-ion battery anodes.
    Xue XY; He B; Yuan S; Xing LL; Chen ZH; Ma CH
    Nanotechnology; 2011 Sep; 22(39):395702. PubMed ID: 21891841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crab-Shell Biotemplated SnO₂ Composite Anodes for Lithium-Ion Batteries.
    Son SY; Hong SA; Oh SY; Lee YC; Lee GW; Kang JW; Huh YS; Kim IT
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6463-6468. PubMed ID: 29677815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of SnO2 hollow nanostructures with controlled interior structures through a template-assisted hydrothermal route.
    Zhang F; Wang KX; Wang XY; Li GD; Chen JS
    Dalton Trans; 2011 Sep; 40(34):8517-9. PubMed ID: 21804979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel 3-D superstructures made up of SnO(2)@C core-shell nanochains for energy storage applications.
    Zhang B; Yu X; Ge C; Dong X; Fang Y; Li Z; Wang H
    Chem Commun (Camb); 2010 Dec; 46(48):9188-90. PubMed ID: 21031191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic effect of SnO2/ZnWO4 core-shell nanorods with high reversible lithium storage capacity.
    Xing LL; Yuan S; He B; Zhao YY; Wu XL; Xue XY
    Chem Asian J; 2013 Jul; 8(7):1530-5. PubMed ID: 23653406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicon core-hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries.
    Chen S; Gordin ML; Yi R; Howlett G; Sohn H; Wang D
    Phys Chem Chem Phys; 2012 Oct; 14(37):12741-5. PubMed ID: 22886283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ synthesis of CuxO/SnOx@CNT and CuxO/SnOx@SnO₂/CNT nanocomposite anodes for lithium ion batteries by a simple chemical treatment process.
    Liu X; Liu F; Sun Q; Ng AM; Djurišić AB; Xie M; Liao C; Shih K; Deng Z
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13478-86. PubMed ID: 25083941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-pot formation of SnO2 hollow nanospheres and alpha-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties.
    Chen JS; Li CM; Zhou WW; Yan QY; Archer LA; Lou XW
    Nanoscale; 2009 Nov; 1(2):280-5. PubMed ID: 20644851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel core-shell-structured Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2 via coprecipitation as positive electrode material for lithium secondary batteries.
    Sun YK; Myung ST; Shin HS; Bae YC; Yoon CS
    J Phys Chem B; 2006 Apr; 110(13):6810-5. PubMed ID: 16570989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and enhanced ethanol sensing characteristics of alpha-Fe2O3/SnO2 core-shell nanorods.
    Chen YJ; Zhu CL; Wang LJ; Gao P; Cao MS; Shi XL
    Nanotechnology; 2009 Jan; 20(4):045502. PubMed ID: 19417318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Walnut core-like hollow carbon micro/nanospheres supported SnO
    Tian Q; Chen Y; Chen F; Chen J; Yang L
    J Colloid Interface Sci; 2019 Oct; 554():424-432. PubMed ID: 31323477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance lithium-ion anodes with hierarchically assembled single-crystal SnO2 nanoflake spheres.
    Liu Z; Bai H; Sun DD
    Chem Asian J; 2012 Oct; 7(10):2381-5. PubMed ID: 22811407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries.
    Sun YK; Myung ST; Kim MH; Prakash J; Amine K
    J Am Chem Soc; 2005 Sep; 127(38):13411-8. PubMed ID: 16173775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries.
    Lin Z; Liu Z; Dudney NJ; Liang C
    ACS Nano; 2013 Mar; 7(3):2829-33. PubMed ID: 23427822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plum-branch-like carbon nanofibers decorated with SnO2 nanocrystals.
    Yang Z; Du G; Guo Z; Yu X; Li S; Chen Z; Zhang P; Liu H
    Nanoscale; 2010 Jun; 2(6):1011-7. PubMed ID: 20648300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile synthesis of yolk-shell structured Si-C nanocomposites as anodes for lithium-ion batteries.
    Pan L; Wang H; Gao D; Chen S; Tan L; Li L
    Chem Commun (Camb); 2014 Jun; 50(44):5878-80. PubMed ID: 24756611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.