These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 20162172)

  • 1. Heteroepitaxial growth of platinum nanocrystals on AgCl nanotubes via galvanic replacement reaction.
    Bi Y; Ye J
    Chem Commun (Camb); 2010 Mar; 46(9):1532-4. PubMed ID: 20162172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous Ni@Pt core-shell nanotube array electrocatalyst with high activity and stability for methanol oxidation.
    Ding LX; Li GR; Wang ZL; Liu ZQ; Liu H; Tong YX
    Chemistry; 2012 Jul; 18(27):8386-91. PubMed ID: 22639332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis of catalytically active platinum nanosponges, nanonetworks, and nanodendrites.
    Lin ZH; Lin MH; Chang HT
    Chemistry; 2009; 15(18):4656-62. PubMed ID: 19291724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced catalytic performance of Au-Pt double-walled nanotubes and their fabrication through galvanic replacement reaction.
    Chen L; Kuai L; Yu X; Li W; Geng B
    Chemistry; 2013 Aug; 19(35):11753-8. PubMed ID: 23852858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly dispersed Pt nanoparticles immobilized on 1,4-benzenediamine-modified multi-walled carbon nanotube for methanol oxidation.
    Cui SK; Guo DJ
    J Colloid Interface Sci; 2009 May; 333(1):300-3. PubMed ID: 19232631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and alignment of silver nanorods and nanowires and the formation of Pt, Pd, and core/shell structures by galvanic exchange directly on surfaces.
    Sławiński GW; Zamborini FP
    Langmuir; 2007 Sep; 23(20):10357-65. PubMed ID: 17760472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Platinum-decorated Au porous nanotubes as highly efficient catalysts for formic acid electro-oxidation.
    Gu X; Cong X; Ding Y
    Chemphyschem; 2010 Mar; 11(4):841-6. PubMed ID: 20166117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous Au-Pt nanostructures with enhanced catalytic activity toward oxygen reduction.
    Ye F; Liu H; Hu W; Zhong J; Chen Y; Cao H; Yang J
    Dalton Trans; 2012 Mar; 41(10):2898-903. PubMed ID: 22261896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A general method for the rapid synthesis of hollow metallic or bimetallic nanoelectrocatalysts with urchinlike morphology.
    Guo S; Dong S; Wang E
    Chemistry; 2008; 14(15):4689-95. PubMed ID: 18384027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. T porous PtIr bimetallic nanotubes with core shell structure for enhanced electrocatalysis on methanol oxidation.
    Zhang T; Pan J; Yuan J; Fang K; Niu L
    Nanotechnology; 2021 Jun; 32(36):. PubMed ID: 34038886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ oxidation synthesis of Ag/AgCl core-shell nanowires and their photocatalytic properties.
    Bi Y; Ye J
    Chem Commun (Camb); 2009 Nov; (43):6551-3. PubMed ID: 19865646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct growth of shape-controlled nanocrystals on nanotubes via biological recognition.
    Yu L; Banerjee IA; Matsui H
    J Am Chem Soc; 2003 Dec; 125(48):14837-40. PubMed ID: 14640660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Platinum/Carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells.
    Lin Y; Cui X; Yen C; Wai CM
    J Phys Chem B; 2005 Aug; 109(30):14410-5. PubMed ID: 16852813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications.
    Tian ZQ; Jiang SP; Liang YM; Shen PK
    J Phys Chem B; 2006 Mar; 110(11):5343-50. PubMed ID: 16539467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrocatalytic properties of Pt nanowires supported on Pt and W gauzes.
    Lee EP; Peng Z; Chen W; Chen S; Yang H; Xia Y
    ACS Nano; 2008 Oct; 2(10):2167-73. PubMed ID: 19206464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructure PtRu/MWNTs as anode catalysts prepared in a vacuum for direct methanol oxidation.
    Gu YJ; Wong WT
    Langmuir; 2006 Dec; 22(26):11447-52. PubMed ID: 17154638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MnO octahedral nanocrystals and MnO@C core-shell composites: synthesis, characterization, and electrocatalytic properties.
    Shanmugam S; Gedanken A
    J Phys Chem B; 2006 Dec; 110(48):24486-91. PubMed ID: 17134206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Platinum-silver alloyed octahedral nanocrystals as electrocatalyst for methanol oxidation reaction.
    Li J; Rong H; Tong X; Wang P; Chen T; Wang Z
    J Colloid Interface Sci; 2018 Mar; 513():251-257. PubMed ID: 29153719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile preparation of ultralong dendritic PtIrTe nanotubes and their high electrocatalytic activity on methanol oxidation.
    Hao Y; Yang Y; Hong L; Yuan J; Niu L; Gui Y
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21986-94. PubMed ID: 25415444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells.
    Mu Y; Liang H; Hu J; Jiang L; Wan L
    J Phys Chem B; 2005 Dec; 109(47):22212-6. PubMed ID: 16853891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.