These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 20162187)

  • 21. Unusual Cyclodextrin Derivatives as a New Avenue to Modulate Self- and Metal-Induced Aβ Aggregation.
    Oliveri V; Bellia F; Pietropaolo A; Vecchio G
    Chemistry; 2015 Sep; 21(40):14047-59. PubMed ID: 26298549
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New cyclodextrin-bearing 8-hydroxyquinoline ligands as multifunctional molecules.
    Oliveri V; Puglisi A; Viale M; Aiello C; Sgarlata C; Vecchio G; Clarke J; Milton J; Spencer J
    Chemistry; 2013 Oct; 19(41):13946-55. PubMed ID: 24038335
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metal complexing agents as therapies for Alzheimer's disease.
    Bush AI
    Neurobiol Aging; 2002; 23(6):1031-8. PubMed ID: 12470799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in metal-induced oxidative stress and human disease.
    Jomova K; Valko M
    Toxicology; 2011 May; 283(2-3):65-87. PubMed ID: 21414382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Site-activated chelators targeting acetylcholinesterase and monoamine oxidase for Alzheimer's therapy.
    Zheng H; Youdim MB; Fridkin M
    ACS Chem Biol; 2010 Jun; 5(6):603-10. PubMed ID: 20455574
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multifunctional coumarin derivatives: monoamine oxidase B (MAO-B) inhibition, anti-β-amyloid (Aβ) aggregation and metal chelation properties against Alzheimer's disease.
    Huang M; Xie SS; Jiang N; Lan JS; Kong LY; Wang XB
    Bioorg Med Chem Lett; 2015 Feb; 25(3):508-13. PubMed ID: 25542589
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeting Biometals in Alzheimer's Disease with Metal Chelating Agents Including Coumarin Derivatives.
    Gucký A; Hamuľaková S
    CNS Drugs; 2024 Jul; 38(7):507-532. PubMed ID: 38829443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chelating and antioxidant properties of l-Dopa containing tetrapeptide for the treatment of neurodegenerative diseases.
    Cacciatore I; Marinelli L; Di Stefano A; Di Marco V; Orlando G; Gabriele M; Gatta DMP; Ferrone A; Franceschelli S; Speranza L; Patruno A
    Neuropeptides; 2018 Oct; 71():11-20. PubMed ID: 29937392
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multifunctional novel Diallyl disulfide (DADS) derivatives with β-amyloid-reducing, cholinergic, antioxidant and metal chelating properties for the treatment of Alzheimer's disease.
    Manral A; Saini V; Meena P; Tiwari M
    Bioorg Med Chem; 2015 Oct; 23(19):6389-403. PubMed ID: 26337018
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel chelators for central nervous system disorders that involve alterations in the metabolism of iron and other metal ions.
    Richardson DR
    Ann N Y Acad Sci; 2004 Mar; 1012():326-41. PubMed ID: 15105276
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of copper and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer's disease.
    Robert A; Liu Y; Nguyen M; Meunier B
    Acc Chem Res; 2015 May; 48(5):1332-9. PubMed ID: 25946460
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent Developments in Metal-Based Drugs and Chelating Agents for Neurodegenerative Diseases Treatments.
    Sales TA; Prandi IG; Castro AA; Leal DHS; Cunha EFFD; Kuca K; Ramalho TC
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31013856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amyloid-beta metal interaction and metal chelation.
    Cuajungco MP; Frederickson CJ; Bush AI
    Subcell Biochem; 2005; 38():235-54. PubMed ID: 15709482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The potential application of iron chelators for the treatment of neurodegenerative diseases.
    Hider RC; Roy S; Ma YM; Le Kong X; Preston J
    Metallomics; 2011 Mar; 3(3):239-49. PubMed ID: 21344071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rebalancing metal dyshomeostasis for Alzheimer's disease therapy.
    Yang GJ; Liu H; Ma DL; Leung CH
    J Biol Inorg Chem; 2019 Dec; 24(8):1159-1170. PubMed ID: 31486954
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dietary chelators as antioxidant enzyme mimetics: implications for dietary intervention in neurodegenerative diseases.
    Hague T; Andrews PL; Barker J; Naughton DP
    Behav Pharmacol; 2006 Sep; 17(5-6):425-30. PubMed ID: 16940763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mapping brain metals to evaluate therapies for neurodegenerative disease.
    Popescu BF; Nichol H
    CNS Neurosci Ther; 2011 Aug; 17(4):256-68. PubMed ID: 20553312
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tacrine-deferiprone hybrids as multi-target-directed metal chelators against Alzheimer's disease: a two-in-one drug.
    Chand K; Rajeshwari ; Candeias E; Cardoso SM; Chaves S; Santos MA
    Metallomics; 2018 Oct; 10(10):1460-1475. PubMed ID: 30183790
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insights Into the Role of Copper in Neurodegenerative Diseases and the Therapeutic Potential of Natural Compounds.
    Zhong G; Wang X; Li J; Xie Z; Wu Q; Chen J; Wang Y; Chen Z; Cao X; Li T; Liu J; Wang Q
    Curr Neuropharmacol; 2024; 22(10):1650-1671. PubMed ID: 38037913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In silico strategies for the selection of chelating compounds with potential application in metal-promoted neurodegenerative diseases.
    Rodríguez-Rodríguez C; Rimola A; Alí-Torres J; Sodupe M; González-Duarte P
    J Comput Aided Mol Des; 2011 Jan; 25(1):21-30. PubMed ID: 21061044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.