BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 20162233)

  • 1. Parallel microfluidic surface plasmon resonance imaging arrays.
    Ouellet E; Lausted C; Lin T; Yang CW; Hood L; Lagally ET
    Lab Chip; 2010 Mar; 10(5):581-8. PubMed ID: 20162233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrokinetic label-free screening chip: a marriage of multiplexing and high throughput analysis using surface plasmon resonance imaging.
    Krishnamoorthy G; Carlen ET; Bomer JG; Wijnperlé D; deBoer HL; van den Berg A; Schasfoort RB
    Lab Chip; 2010 Apr; 10(8):986-90. PubMed ID: 20358104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multiple-ligand approach to extending the dynamic range of analyte quantification in protein microarrays.
    Andersson O; Nikkinen H; Kanmert D; Enander K
    Biosens Bioelectron; 2009 Apr; 24(8):2458-64. PubMed ID: 19186048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of protein interactions on protein arrays by a novel spectral surface plasmon resonance imaging.
    Yuk JS; Kim HS; Jung JW; Jung SH; Lee SJ; Kim WJ; Han JA; Kim YM; Ha KS
    Biosens Bioelectron; 2006 Feb; 21(8):1521-8. PubMed ID: 16095894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic array platform for simultaneous lipid bilayer membrane formation.
    Zagnoni M; Sandison ME; Morgan H
    Biosens Bioelectron; 2009 Jan; 24(5):1235-40. PubMed ID: 18760585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface plasmon resonance imaging for affinity-based biosensors.
    Scarano S; Mascini M; Turner AP; Minunni M
    Biosens Bioelectron; 2010 Jan; 25(5):957-66. PubMed ID: 19765967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ microarray fabrication and analysis using a microfluidic flow cell array integrated with surface plasmon resonance microscopy.
    Liu J; Eddings MA; Miles AR; Bukasov R; Gale BK; Shumaker-Parry JS
    Anal Chem; 2009 Jun; 81(11):4296-301. PubMed ID: 19408947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization.
    Malic L; Veres T; Tabrizian M
    Biosens Bioelectron; 2009 Mar; 24(7):2218-24. PubMed ID: 19136248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructured digital microfluidics for enhanced surface plasmon resonance imaging.
    Malic L; Veres T; Tabrizian M
    Biosens Bioelectron; 2011 Jan; 26(5):2053-9. PubMed ID: 20926281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time protein biosensor arrays based on surface plasmon resonance differential phase imaging.
    Wong CL; Ho HP; Suen YK; Kong SK; Chen QL; Yuan W; Wu SY
    Biosens Bioelectron; 2008 Dec; 24(4):606-12. PubMed ID: 18644712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional droplet-based surface plasmon resonance imaging using electrowetting-on-dielectric microfluidics.
    Malic L; Veres T; Tabrizian M
    Lab Chip; 2009 Feb; 9(3):473-5. PubMed ID: 19156299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity of ex situ and in situ spectral surface plasmon resonance sensors in the analysis of protein arrays.
    Yuk JS; Jung JW; Jung SH; Han JA; Kim YM; Ha KS
    Biosens Bioelectron; 2005 May; 20(11):2189-96. PubMed ID: 15797315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay.
    Lee KH; Su YD; Chen SJ; Tseng FG; Lee GB
    Biosens Bioelectron; 2007 Nov; 23(4):466-72. PubMed ID: 17618110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel label-free multi-throughput optical biosensor based on localized surface plasmon resonance.
    Huang H; He C; Zeng Y; Xia X; Yu X; Yi P; Chen Z
    Biosens Bioelectron; 2009 Mar; 24(7):2255-9. PubMed ID: 19042120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method of binding kinetics of a ligand to micropatterned proteins on a microfluidic chip.
    Lee CS; Lee SH; Kim YG; Lee JH; Kim YK; Kim BG
    Biosens Bioelectron; 2007 Jan; 22(6):891-8. PubMed ID: 16679009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface plasmon resonance biosensor for biomolecular interaction analysis based on spatial modulation phase detection.
    Ding X; Liu F; Yu X
    Methods Mol Biol; 2009; 503():21-35. PubMed ID: 19151934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New reactive polymer for protein immobilisation on sensor surfaces.
    Kyprianou D; Guerreiro AR; Chianella I; Piletska EV; Fowler SA; Karim K; Whitcombe MJ; Turner AP; Piletsky SA
    Biosens Bioelectron; 2009 Jan; 24(5):1365-71. PubMed ID: 18801652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic device for immunoassays based on surface plasmon resonance imaging.
    Luo Y; Yu F; Zare RN
    Lab Chip; 2008 May; 8(5):694-700. PubMed ID: 18432338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging technique for the screening of protein-protein interactions using scattered light under surface plasmon resonance conditions.
    Savchenko A; Kashuba E; Kashuba V; Snopok B
    Anal Chem; 2007 Feb; 79(4):1349-55. PubMed ID: 17297933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated electrokinetic sample focusing and surface plasmon resonance imaging system for measuring biomolecular interactions.
    Krishnamoorthy G; Carlen ET; Kohlheyer D; Schasfoort RB; van den Berg A
    Anal Chem; 2009 Mar; 81(5):1957-63. PubMed ID: 19186980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.