BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 20162238)

  • 1. Electrochemical cell lysis device for DNA extraction.
    Lee HJ; Kim JH; Lim HK; Cho EC; Huh N; Ko C; Park JC; Choi JW; Lee SS
    Lab Chip; 2010 Mar; 10(5):626-33. PubMed ID: 20162238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microfluidic approach for high efficiency extraction of low molecular weight RNA.
    Vulto P; Dame G; Maier U; Makohliso S; Podszun S; Zahn P; Urban GA
    Lab Chip; 2010 Mar; 10(5):610-6. PubMed ID: 20162236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage.
    Wang HY; Bhunia AK; Lu C
    Biosens Bioelectron; 2006 Dec; 22(5):582-8. PubMed ID: 16530400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of engineering flow conditions on plasmid DNA yield and purity in chemical cell lysis operations.
    Meacle FJ; Lander R; Ayazi Shamlou P; Titchener-Hooker NJ
    Biotechnol Bioeng; 2004 Aug; 87(3):293-302. PubMed ID: 15281104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous-flow fractionation of animal cells in microfluidic device using aqueous two-phase extraction.
    Nam KH; Chang WJ; Hong H; Lim SM; Kim DI; Koo YM
    Biomed Microdevices; 2005 Sep; 7(3):189-95. PubMed ID: 16133806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proximal bacterial lysis and detection in nanoliter wells using electrochemistry.
    Besant JD; Das J; Sargent EH; Kelley SO
    ACS Nano; 2013 Sep; 7(9):8183-9. PubMed ID: 23930741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-chip cell lysis by local hydroxide generation.
    Di Carlo D; Ionescu-Zanetti C; Zhang Y; Hung P; Lee LP
    Lab Chip; 2005 Feb; 5(2):171-8. PubMed ID: 15672131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell lysis and DNA extraction of gram-positive and gram-negative bacteria from whole blood in a disposable microfluidic chip.
    Mahalanabis M; Al-Muayad H; Kulinski MD; Altman D; Klapperich CM
    Lab Chip; 2009 Oct; 9(19):2811-7. PubMed ID: 19967118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical disruption of mammalian cells in a microfluidic system and its numerical analysis based on computational fluid dynamics.
    Wurm M; Zeng AP
    Lab Chip; 2012 Mar; 12(6):1071-7. PubMed ID: 22311121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel sample preparation method for molecular detection of Mollicutes in cell culture samples.
    Lehmann D; Jouette S; Olivieri F; Laborde S; Rofel C; Simon E; Metz D; Felden L; Ribault S
    J Microbiol Methods; 2010 Feb; 80(2):183-9. PubMed ID: 20026362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic sonicator for real-time disruption of eukaryotic cells and bacterial spores for DNA analysis.
    Marentis TC; Kusler B; Yaralioglu GG; Liu S; Haeggström EO; Khuri-Yakub BT
    Ultrasound Med Biol; 2005 Sep; 31(9):1265-77. PubMed ID: 16176793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of a centrifugal microfluidic sample lysis and homogenization platform for nucleic acid extraction with clinical samples.
    Siegrist J; Gorkin R; Bastien M; Stewart G; Peytavi R; Kido H; Bergeron M; Madou M
    Lab Chip; 2010 Feb; 10(3):363-71. PubMed ID: 20091009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microchip-based one step DNA extraction and real-time PCR in one chamber for rapid pathogen identification.
    Lee JG; Cheong KH; Huh N; Kim S; Choi JW; Ko C
    Lab Chip; 2006 Jul; 6(7):886-95. PubMed ID: 16804593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell lysis on a microfluidic CD (compact disc).
    Kim J; Hee Jang S; Jia G; Zoval JV; Da Silva NA; Madou MJ
    Lab Chip; 2004 Oct; 4(5):516-22. PubMed ID: 15472738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time PCR microfluidic devices with concurrent electrochemical detection.
    Fang TH; Ramalingam N; Xian-Dui D; Ngin TS; Xianting Z; Lai Kuan AT; Peng Huat EY; Hai-Qing G
    Biosens Bioelectron; 2009 Mar; 24(7):2131-6. PubMed ID: 19162460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully integrated miniature device for automated gene expression DNA microarray processing.
    Liu RH; Nguyen T; Schwarzkopf K; Fuji HS; Petrova A; Siuda T; Peyvan K; Bizak M; Danley D; McShea A
    Anal Chem; 2006 Mar; 78(6):1980-6. PubMed ID: 16536436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic sample preparation: cell lysis and nucleic acid purification.
    Kim J; Johnson M; Hill P; Gale BK
    Integr Biol (Camb); 2009 Oct; 1(10):574-86. PubMed ID: 20023774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Capacity Redox Polymer Electrodes: Applications in Molecular and Cellular Processing.
    Galligan C; Nguyen C; Nelson J; Spooner P; Miller T; Davis BM; Lenigk R; Puleo CM
    SLAS Technol; 2018 Aug; 23(4):374-386. PubMed ID: 29186669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time electrochemical monitoring of the polymerase chain reaction by mediated redox catalysis.
    Deféver T; Druet M; Rochelet-Dequaire M; Joannes M; Grossiord C; Limoges B; Marchal D
    J Am Chem Soc; 2009 Aug; 131(32):11433-41. PubMed ID: 19722651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wireless induction heating in a microfluidic device for cell lysis.
    Baek SK; Min J; Park JH
    Lab Chip; 2010 Apr; 10(7):909-17. PubMed ID: 20379569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.