These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 20162325)

  • 1. Characterization of commercial rigid polyurethane foams used as bone analogs for implant testing.
    Calvert KL; Trumble KP; Webster TJ; Kirkpatrick LA
    J Mater Sci Mater Med; 2010 May; 21(5):1453-61. PubMed ID: 20162325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone.
    Patel PS; Shepherd DE; Hukins DW
    BMC Musculoskelet Disord; 2008 Oct; 9():137. PubMed ID: 18844988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical characterization of bone quality in distal femur fractures using pre-operative computed tomography scans.
    Inacio JV; Malige A; Schroeder JT; Nwachuku CO; Dailey HL
    Clin Biomech (Bristol, Avon); 2019 Jul; 67():20-26. PubMed ID: 31059970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compressive and shear properties of commercially available polyurethane foams.
    Thompson MS; McCarthy ID; Lidgren L; Ryd L
    J Biomech Eng; 2003 Oct; 125(5):732-4. PubMed ID: 14618933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility of 17-4 PH stainless steel foam for implant applications.
    Mutlu I; Oktay E
    Biomed Mater Eng; 2011; 21(4):223-33. PubMed ID: 22182790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications.
    Peng WM; Liu YF; Jiang XF; Dong XT; Jun J; Baur DA; Xu JJ; Pan H; Xu X
    J Zhejiang Univ Sci B; 2019 Aug.; 20(8):647-659. PubMed ID: 31273962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue behavior of TiNi foams processed by the magnesium space holder technique.
    Nakaş GI; Dericioglu AF; Bor S
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2017-23. PubMed ID: 22098901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyurethane foams: effects of specimen size when determining cushioning stiffness.
    Todd BA; Smith SL; Vongpaseuth T
    J Rehabil Res Dev; 1998 Jun; 35(2):219-24. PubMed ID: 9651894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical properties tailoring of topology optimized and selective laser melting fabricated Ti6Al4V lattice structure.
    Xu Y; Zhang D; Hu S; Chen R; Gu Y; Kong X; Tao J; Jiang Y
    J Mech Behav Biomed Mater; 2019 Nov; 99():225-239. PubMed ID: 31400657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparisons of Anterior Plate Screw Pullout Strength Between Polyurethane Foams and Thoracolumbar Cadaveric Vertebrae.
    Nagaraja S; Palepu V
    J Biomech Eng; 2016 Oct; 138(10):. PubMed ID: 27536905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of cortical bone thickness and trabecular bone strength on noninvasive measures of the implant primary stability using synthetic bone models.
    Hsu JT; Fuh LJ; Tu MG; Li YF; Chen KT; Huang HL
    Clin Implant Dent Relat Res; 2013 Apr; 15(2):251-61. PubMed ID: 21599830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical behavior and microstructure of compressed Ti foams synthesized via freeze casting.
    Jenei P; Choi H; Tóth A; Choe H; Gubicza J
    J Mech Behav Biomed Mater; 2016 Oct; 63():407-416. PubMed ID: 27469602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Different Experience Levels of Orthopaedic Residents Effect on Polymethylmethacrylate (PMMA) Bone Cement Mechanical Properties.
    Struemph JM; Chong AC; Wooley PH
    Iowa Orthop J; 2015; 35():193-8. PubMed ID: 26361465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyurethane Foams for Thermal Insulation Uses Produced from Castor Oil and Crude Glycerol Biopolyols.
    Carriço CS; Fraga T; Carvalho VE; Pasa VMD
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28671592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterising the compressive anisotropic properties of analogue bone using optical strain measurement.
    Marter AD; Dickinson AS; Pierron F; Fong YKK; Browne M
    Proc Inst Mech Eng H; 2019 Sep; 233(9):954-960. PubMed ID: 31210622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressive Behavior of Aluminum Microfibers Reinforced Semi-Rigid Polyurethane Foams.
    Linul E; Vălean C; Linul PA
    Polymers (Basel); 2018 Nov; 10(12):. PubMed ID: 30961223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Open cell polyurethane foam compression failure characterization and its relationship to morphometry.
    Belda R; Palomar M; Marco M; Vercher-Martínez A; Giner E
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111754. PubMed ID: 33545895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of an experimental polyurethane model for biomechanical studies on implant-supported prosthesis--compression tests.
    Moretti Neto RT; Hiramatsu DA; Suedam V; Conti PC; Rubo JH
    J Appl Oral Sci; 2011; 19(1):47-51. PubMed ID: 21437469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of Young׳s modulus of trabeculae in microscale using macro-scale׳s relationships between bone density and mechanical properties.
    Cyganik Ł; Binkowski M; Kokot G; Rusin T; Popik P; Bolechała F; Nowak R; Wróbel Z; John A
    J Mech Behav Biomed Mater; 2014 Aug; 36():120-34. PubMed ID: 24837330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation behavior, cytotoxicity, hemolysis, and antibacterial properties of electro-deposited Zn-Cu metal foams as potential biodegradable bone implants.
    Tong X; Shi Z; Xu L; Lin J; Zhang D; Wang K; Li Y; Wen C
    Acta Biomater; 2020 Jan; 102():481-492. PubMed ID: 31740321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.