These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 20162357)

  • 1. Airway wall stiffening increases peak wall shear stress: a fluid-structure interaction study in rigid and compliant airways.
    Xia G; Tawhai MH; Hoffman EA; Lin CL
    Ann Biomed Eng; 2010 May; 38(5):1836-53. PubMed ID: 20162357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model.
    Perktold K; Rappitsch G
    J Biomech; 1995 Jul; 28(7):845-56. PubMed ID: 7657682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical investigation of blood flow in a deformable coronary bifurcation and non-planar branch.
    Razavi SE; Omidi AA; Saghafi Zanjani M
    Bioimpacts; 2014; 4(4):199-204. PubMed ID: 25671176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemodynamic analysis of a compliant femoral artery bifurcation model using a fluid structure interaction framework.
    Kim YH; Kim JE; Ito Y; Shih AM; Brott B; Anayiotos A
    Ann Biomed Eng; 2008 Nov; 36(11):1753-63. PubMed ID: 18792781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia.
    Hofer M; Rappitsch G; Perktold K; Trubel W; Schima H
    J Biomech; 1996 Oct; 29(10):1297-308. PubMed ID: 8884475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unsteady and three-dimensional simulation of blood flow in the human aortic arch.
    Shahcheraghi N; Dwyer HA; Cheer AY; Barakat AI; Rutaganira T
    J Biomech Eng; 2002 Aug; 124(4):378-87. PubMed ID: 12188204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wall shear stress distributions in a model of normal and constricted small airways.
    Evans DJ; Green AS; Thomas NK
    Proc Inst Mech Eng H; 2014 Apr; 228(4):362-70. PubMed ID: 24618983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow Characteristics in an Anatomically Realistic Compliant Carotid Artery Bifurcation Model.
    Karner G; Perktold K; Hofer M; Liepsch D
    Comput Methods Biomech Biomed Engin; 1999; 2(3):171-185. PubMed ID: 11264826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Peak Wall Stress in an Ascending Thoracic Aortic Aneurysm Using FSI Simulations: Effects of Aortic Stiffness and Peripheral Resistance.
    Campobasso R; Condemi F; Viallon M; Croisille P; Campisi S; Avril S
    Cardiovasc Eng Technol; 2018 Dec; 9(4):707-722. PubMed ID: 30341731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling of flow and wall behaviour in a mildly stenosed tube.
    Lee KW; Xu XY
    Med Eng Phys; 2002 Nov; 24(9):575-86. PubMed ID: 12376044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastosis during airway wall remodeling explains multiple co-existing instability patterns.
    Eskandari M; Javili A; Kuhl E
    J Theor Biol; 2016 Aug; 403():209-218. PubMed ID: 27211101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of compliance on wall shear in casts of a human aortic bifurcation.
    Duncan DD; Bargeron CB; Borchardt SE; Deters OJ; Gearhart SA; Mark FF; Friedman MH
    J Biomech Eng; 1990 May; 112(2):183-8. PubMed ID: 2345449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational fluid dynamics modelling of human upper airway: A review.
    Faizal WM; Ghazali NNN; Khor CY; Badruddin IA; Zainon MZ; Yazid AA; Ibrahim NB; Razi RM
    Comput Methods Programs Biomed; 2020 Nov; 196():105627. PubMed ID: 32629222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New perspectives on the mechanical basis for airway hyperreactivity and airway hypersensitivity in asthma.
    Affonce DA; Lutchen KR
    J Appl Physiol (1985); 2006 Dec; 101(6):1710-9. PubMed ID: 16902064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical aspects of compliant airways due to mechanical ventilation.
    Koombua K; Pidaparti RM; Longest PW; Ward KR
    Mol Cell Biomech; 2009 Dec; 6(4):203-16. PubMed ID: 19899444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shear stress at a compliant model of the human carotid bifurcation.
    Anayiotos AS; Jones SA; Giddens DP; Glagov S; Zarins CK
    J Biomech Eng; 1994 Feb; 116(1):98-106. PubMed ID: 8189720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of asymmetry in abdominal aortic aneurysms under physiologically realistic pulsatile flow conditions.
    Finol EA; Keyhani K; Amon CH
    J Biomech Eng; 2003 Apr; 125(2):207-17. PubMed ID: 12751282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients.
    Wells DR; Archie JP; Kleinstreuer C
    J Vasc Surg; 1996 Apr; 23(4):667-78. PubMed ID: 8627904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.