These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 20162357)

  • 21. Chronic effects of mechanical force on airways.
    Tschumperlin DJ; Drazen JM
    Annu Rev Physiol; 2006; 68():563-83. PubMed ID: 16460284
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Velocity and wall shear stress patterns in the human right coronary artery.
    Kirpalani A; Park H; Butany J; Johnston KW; Ojha M
    J Biomech Eng; 1999 Aug; 121(4):370-5. PubMed ID: 10464690
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pulsatile flow simulation in arterial vascular segments with intravascular ultrasound images.
    Liu Y; Lai Y; Nagaraj A; Kane B; Hamilton A; Greene R; McPherson DD; Chandran KB
    Med Eng Phys; 2001 Oct; 23(8):583-95. PubMed ID: 11719081
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative CT-based structural alterations of segmental airways in cement dust-exposed subjects.
    Kim T; Cho HB; Kim WJ; Lee CH; Chae KJ; Choi SH; Lee KE; Bak SH; Kwon SO; Jin GY; Choi J; Park EK; Lin CL; Hoffman EA; Choi S
    Respir Res; 2020 May; 21(1):133. PubMed ID: 32471435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A numerical study on hemodynamics in the left coronary bifurcation with normal and hypertension conditions.
    Bahrami S; Norouzi M
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1785-1796. PubMed ID: 30027356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress.
    Zarins CK; Giddens DP; Bharadvaj BK; Sottiurai VS; Mabon RF; Glagov S
    Circ Res; 1983 Oct; 53(4):502-14. PubMed ID: 6627609
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modelling of peak-flow wall shear stress in major airways of the lung.
    Green AS
    J Biomech; 2004 May; 37(5):661-7. PubMed ID: 15046995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness.
    Scotti CM; Shkolnik AD; Muluk SC; Finol EA
    Biomed Eng Online; 2005 Nov; 4():64. PubMed ID: 16271141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interstitial fluid-solid interaction within aneurysmal and non-pathological human ascending aortic tissue under translational sinusoidal shear deformation.
    Haslach HW; Gipple J; Harwerth J; Rabin J
    Acta Biomater; 2020 Sep; 113():452-463. PubMed ID: 32645439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the necessity of modelling fluid-structure interaction for stented coronary arteries.
    Chiastra C; Migliavacca F; Martínez MÁ; Malvè M
    J Mech Behav Biomed Mater; 2014 Jun; 34():217-30. PubMed ID: 24607760
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of size and elasticity on the relation between flow velocity and wall shear stress in side-wall aneurysms: A lattice Boltzmann-based computer simulation study.
    Wang H; Krüger T; Varnik F
    PLoS One; 2020; 15(1):e0227770. PubMed ID: 31945111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a general method for designing microvascular networks using distribution of wall shear stress.
    Sayed Razavi M; Shirani E
    J Biomech; 2013 Sep; 46(13):2303-9. PubMed ID: 23891174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Viscous airflow through a rigid tube with a compliant lining: a simple model for the air-mucus interaction in pulmonary airways.
    Evrensel CA; Khan RU; Elli S; Krumpe PE
    J Biomech Eng; 1993 Aug; 115(3):262-70. PubMed ID: 8231141
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wall shear rate distribution in an abdominal aortic bifurcation model: effects of vessel compliance and phase angle between pressure and flow waveforms.
    Lee CS; Tarbell JM
    J Biomech Eng; 1997 Aug; 119(3):333-42. PubMed ID: 9285347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flow and stress characteristics in rigid walled and compliant carotid artery bifurcation models.
    Perktold K; Thurner E; Kenner T
    Med Biol Eng Comput; 1994 Jan; 32(1):19-26. PubMed ID: 8182957
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relationship between airway inflammation and remodeling in patients with asthma and chronic obstructive pulmonary disease.
    Górska K; Krenke R; Kosciuch J; Korczynski P; Zukowska M; Domagala-Kulawik J; Maskey-Warzechowska M; Chazan R
    Eur J Med Res; 2009 Dec; 14 Suppl 4(Suppl 4):90-6. PubMed ID: 20156734
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects.
    Milner JS; Moore JA; Rutt BK; Steinman DA
    J Vasc Surg; 1998 Jul; 28(1):143-56. PubMed ID: 9685141
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of single-sided inferior turbinectomy on nasal function and airflow characteristics.
    Na Y; Chung KS; Chung SK; Kim SK
    Respir Physiol Neurobiol; 2012 Mar; 180(2-3):289-97. PubMed ID: 22227321
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Haemodynamic assessment of human coronary arteries is affected by degree of freedom of artery movement.
    Javadzadegan A; Yong AS; Chang M; Ng MK; Behnia M; Kritharides L
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):260-272. PubMed ID: 27467730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.